
RANGE ANALYSIS OF BINARIES WITH DECISION
PROCEDURES

a thesis submitted to

The University of Kent

in the subject of computer science

for the degree

of doctor of philosophy.

By

Edward Barrett

September 2014

Contents

List of Tables vi

List of Figures vii

List of Algorithms ix

Abstract x

Acknowledgements xi

Typesetting Conventions xiii

1 Introduction 1

1.1 Applications for Binary Analysis 2

1.2 Static or Dynamic Analysis? . 6

1.3 Static CFG Recovery and Indirect Jumps 8

1.4 Range Analysis as an Optimisation Problem 13

1.5 Roadmap . 19

2 Abstract Interpretation 21

2.1 A Toy Programming Language . 21

2.2 Abstraction with Signs . 22

2.2.1 Concrete Domain and Collecting Semantics 23

2.2.2 Abstract Domain and Domain Correspondence 26

2.2.3 Abstract Semantics . 29

2.2.4 Termination and Monotonicity 32

2.2.5 Solving . 32

2.3 Range Analysis with Intervals . 33

ii

2.3.1 Revised Abstraction . 35

2.3.2 Abstract Semantics . 37

2.3.3 Solving . 39

2.4 Ensuring Fast Termination with Widening 39

2.4.1 Widening for Intervals . 42

2.4.2 A Widening for G Programs 43

2.5 Chapter Summary . 46

3 Ranges and Sets for Boolean Formulae 48

3.1 Motivation . 48

3.2 Range Abstraction . 50

3.2.1 Computing the Minimum 51

3.2.2 Computing the Maximum 52

3.3 Set Abstraction . 53

3.4 Experimental Results . 56

3.5 Chapter Summary . 58

4 Quantifier Elimination with Optimisation 60

4.1 Motivation . 60

4.1.1 Applying Range and Set Abstraction Naively 61

4.1.2 The Need for Quantifier Elimination 63

4.2 Quantifier Elimination by Prime Implicates 65

4.3 Chvátal Cuts . 67

4.4 Worked Example . 70

4.5 Mixed Integer Linear Programming 71

4.5.1 Enumerating Cuts . 74

4.5.2 Termination . 76

4.5.3 Implementation Detail . 77

4.6 Experimental Results . 78

4.7 Chapter Summary . 80

5 Range Analysis using Linear Programming 85

5.1 Introduction . 85

5.2 Motivation . 86

5.3 Worked Example . 89

iii

5.3.1 Collecting Semantics . 89

5.3.2 Abstract Semantics . 91

5.3.3 Direct Calculation of the Abstract Semantics 93

5.4 Deriving the Initial Optimisation Problem 94

5.5 Solving Minimum and Maximum Constraints 96

5.5.1 Constraint Decomposition 97

5.5.2 Constraint Solving . 98

5.5.3 Heuristics . 100

5.6 Experimental Results . 102

5.6.1 Comparison with Kleene Iteration 105

5.7 Discussion . 106

5.7.1 Conditional Semantics . 107

5.7.2 Junk propagation . 107

5.8 Chapter Summary . 108

6 Modelling Integer Overflow with MILP 110

6.1 Introduction . 110

6.2 Worked Example . 112

6.2.1 Collecting Semantics . 112

6.2.2 Abstract Semantics . 115

6.2.3 Solving via Mathematical Optimisation 117

6.3 Piecewise Linear Functions in MILP 119

6.3.1 The Decision Phase . 119

6.3.2 The Impose Phase . 120

6.4 Encoding Control Flow and Reachability 122

6.4.1 Intra-Block Reachability 122

6.4.2 Inter-Block Reachability 123

6.4.3 Interval Partitioning for Conditional Jumps 124

6.4.4 Control Flow Joining . 125

6.5 Modelling Mixed Signedness . 126

6.5.1 Algebraic Inference Structures 129

6.5.2 Algorithm . 131

6.6 Experimental Results. 134

6.7 Chapter Summary . 135

iv

7 Related Work 137

7.1 Abstraction of Boolean Formulae 138

7.2 Quantifier Elimination . 142

7.3 Fixpoint Acceleration . 145

7.4 Novel Solving Strategies . 147

7.5 Modulo Arithmetic Abstraction 151

8 Future Work and Conclusions 155

8.1 Reflection upon Chapters 3 and 4 155

8.2 Reflection upon Chapters 5 and 6 157

8.3 Final Remarks . 159

A Proofs 162

A.1 Proofs for Chapter 2. 162

A.2 Proofs for Chapter 4. 175

A.3 Proofs for Chapter 6 . 176

B Bibliography 180

v

List of Tables

1 Fixpoint computation for example1.g 33

2 False positives introduced via a coarse abstract domain. 35

3 Fixpoint computation for example2.g. 39

4 Non-terminating solving. 41

5 Reaching a fixpoint via widening 46

6 Demonstrating convergence of set abstraction 56

vi

List of Figures

1 There are a large number of traces through even small CFGs. . . 8

2 Arithmetic operations upon signed and unsigned integers 18

3 The grammar of the toy language, G. 22

4 example1.g. 23

5 example2.g. 34

6 example3.g . 40

7 Convergence of set abstraction shown diagramatically. 56

8 Satisfiable jump addresses vs. time. 57

9 Time taken to solve minima and maxima 59

10 Implicates generated by exhaustive binary resolution 72

11 Initial clause constraints for the worked example. 73

12 MILP for the first iteration of the worked example 74

13 Clause constraints for the second iteration of the worked example. 76

14 MILP for the second iteration of the worked example 77

15 Number of operations required for problems containing 5 variables

and 8 clauses of length between 1 and 4. 81

16 Solving times for problems containing 5 variables and 8 clauses of

length between 1 and 4. 81

17 Number of operations required for problems containing 10 variables

and 16 clauses of length between 1 and 4. 82

18 Solving times for problems containing 10 variables and 16 clauses

of length between 1 and 4. 82

19 Number of operations required for problems containing 20 variables

and 32 clauses of length between 1 and 4. 83

vii

20 Solving times for problems containing 20 variables and 32 clauses

of length between 1 and 4. 83

21 Control flow graph for the worked example program. 89

22 Interval abstraction in two dimensions 91

23 Optimisation problem for the worked example. 93

24 Revised abstract semantics for the worked example. 95

25 First three linear relaxations of the worked example program. . . 101

26 Experimental results for the worked example 103

27 Results for the second and third experiments 104

28 Allocating a UTF-32 string buffer. 113

29 Collecting semantics. 114

30 Abstract semantics for the worked example. 115

31 Example outcome of type inference. 128

32 Experimental results . 135

viii

List of Algorithms

1 One possible widening algorithm for G programs. 45

2 Computing the minimum value of the bit-vector x 52

3 Computing a set abstraction for the bit-vector x 54

4 Quantifier Elimination by Prime Implicates (QEPI) 66

5 Binary resolution algorithm used in experiments. 79

6 Binary search algorithm. 100

7 Heuristic 1 . 101

8 Inferring register types. 132

ix

Abstract

In the past few years, there has been increased interest in automating the reverse

engineering and verification of binary executable code. The importance of this

subject has been highlighted by the growing relevance of security, of reliability

and of legacy code. Since dynamic analysis is of limited use for whole-program

analyses, there has been a renewed enthusiasm for the development of automated

static analyses, which can prove a property holds over all paths of the program.

The abstract interpretation framework serves this purpose and has been widely

adopted in both academic and industrial circles. Yet, since its introduction in

1977, standard abstract interpretation has been formulated as the least solution

of a set of fixpoint equations.

The work in this thesis deviates from the standard approach to static analysis,

proposing that recent advances in decision procedures could be leveraged to tackle

the problem. The thesis can be considered to be a survey of the application

of Boolean satisfiability (SAT) and linear optimisation to the problem of static

analysis, specifically range analysis of binary executable code. It is shown (with

experimental results) that SAT and linear optimisation can be used to infer ranges

of register values which, amongst others, are useful for control flow recovery and

for detecting binary vulnerabilities, such as buffer and heap overflows.

x

Acknowledgements

Copyright

• The work presented in Chapter 3 is derived from work by Edd Barrett and

Andy King, published by Elsevier [9].

• The work presented in Chapter 5 is derived from work by Edd Barrett and

Andy King, published by Springer [10].

Personal Acknowledgements

First and foremost, I would like to thank my supervisor Andy King, for giving me

the opportunity to study for my Ph.D. I have learned a lot from Andy and on nu-

merous occasions he has risen above and beyond the expectations of a supervisor.

A big thanks goes to my wonderful family, who have always believed in me

and supported me through thick and thin. A special thanks goes to my Grandma

and Grandpa, who helped me through the final months of my studies when my

monetary situation was difficult. For this I am most grateful. I regret that my

Father, Glen, will not see my achievement, as sadly he passed away during the

course of my Ph.D. A further thanks goes to everyone that helped me during this

difficult time.

Thanks to all of my friends in Canterbury and back home in Basingstoke, who

have offered endless amounts of encouragement, food and beer. A special thanks

goes out to Debora Claros for being nothing less than awesome. During the long

months of thesis writing, Debora fed me, proof read my work and offered a great

deal of moral support. I can’t emphasise enough how much I appreciate this.

xi

I would like to thank my fellow postgraduate students who are currently resid-

ing in, or have resided in SW104 (a.k.a. the zoo). In particular I thank Thomas

Schilling, Martin Ellis, Edward Robbins and Jael Kriener for the insightful dis-

cussions we had and for their willingness to freely share their knowledge. I also

thank Edward Robbins for letting me stay in his spare room for a few months.

Thanks to the anonymous reviewers of my papers, and to those who proof read

this thesis. A big thanks to Fred Barnes and Sebastian Hunt for examining this

thesis. Thanks to Jörg Brauer, who offered some valuable feedback on a research

idea that later become the published work presented in Chapter 5. Thanks to

Laurence Tratt for allowing me to take time off work to apply corrections to this

thesis.

Finally, I would like to take the opportunity to thank the hundreds of software

authors whose code I used under an open-source license. I strongly believe that

software should be free and open, especially for educational purposes, so thank

you all.

xii

Typesetting Conventions

The following typesetting conventions are used in this thesis:

• Vectors are set in bold, e.g. v = 〈1, 2, 3〉.

• Source code and program variables are set in a monospace typewriter font.

For example, eax refers to a CPU register.

• Assembler instructions and sequences of assembler instructions in the body

of the main text are set in vector brackets using semi-colons to separate

instructions. For example, 〈mov eax, 666; shl eax, 2〉.

• Assmbler code is shown in Intel syntax (as opposed to AT&T syntax).

• When discussing program semantics, abstract domain operations are squared,

whereas concrete domain operations are not. For example v vs. ⊆.

xiii

Chapter 1

Introduction

Because programming a computer in its native binary language is highly imprac-

tical, tooling has been developed which eases the software development process.

Instead of working directly with native binary code, typically programmers in-

put program code in a high-level dialect (a programming language) which is then

translated into the native language of the computer by a compiler. The output of

a high-level language compiler is a collection of object files, which are then linked

to give a binary file, ready for execution at the user’s convenience1. There are

numerous advantages to programming a computer in this way. Development time

is greatly reduced because the low-level intricacies of the underlying architecture

need not be relevant to the programmer. There is also a huge number of program-

ming languages available from which to choose. Each language targets a different

kind of problem and in its own unique way. Instead of being restricted to a single

programming paradigm, as with coding at the binary-level, the programmer is

free to choose the right tool for the job on a per-project basis. Further, high-level

source code can often be compiled for different platforms and architectures with

minimal alterations. Native binary code, however, is restricted to a single archi-

tecture, meaning that a binary code implementation would need to be written for

each individual architecture that the program is required to execute upon. For

these reasons (and others), programming using a high-level language is by now,

standard software engineering practice.

Compiler construction and programming language design are topics which have

1Scripting languages and virtual machines are not considered in this thesis.

1

CHAPTER 1. INTRODUCTION 2

been studied in great detail; at least to the point where definitive texts are avail-

able from mainstream publishers [3, 4]. A lesser explored topic however, is the

process of reversing compilation. Sometimes there is the need to extract meaning

from binary code. Traditionally this was a task reserved only for so-called black-

hat crackers, who inspect and modify commercial software packages at the binary

level. Typically the aim is to circumvent copy protection mechanisms to illegally

re-distribute the software. Since commercial software houses do not publish the

source code of their products, crackers are forced to analyse and modify the pro-

grams at the binary level. Recently however, many legitimate applications for the

(automated) analysis of binary code have surfaced.

1.1 Applications for Binary Analysis

The applications for binary analysis fall under one of two broad classifications:

reverse engineering and software verification. In the context of software, reverse

engineering is the art of developing an understanding of a program from the

compiled code alone. Usually the need to reverse engineer binary code stems from

the fact that there is no access to the high-level source code from which the binary

is built. There are a number of reasons for binary reversing, for example:

Malware detection and classification. Malware is the umbrella term used to

describe software with malicious intent or adverse behaviour. Malware is

developed illegally and then transmitted, traditionally via removable media,

but more recently via the Internet. The function of malware can range from

annoying messages to catastrophic data loss or even damage to hardware.

It is the role of anti-virus firms to distribute software which can identify

and remove unwanted malware from infected systems. Typically anti-virus

software will contain a database of virus signatures which serves as a ba-

sis for malware identification. The information in the database is collected

by security engineers whose job it is to reverse engineer suspect binaries.

Malware writers take advantage of the fact that binary code is difficult to

reverse engineer and do not disclose the source code of their malware. In

more recent years, malware authors have gone as far as to apply obfuscation,

anti-debugging and packing techniques to make reversing harder still. The

CHAPTER 1. INTRODUCTION 3

war on malware has become an arms race, with malware writers deploying

successively more intricate attacks, and with anti-virus companies allocat-

ing more time and money into ways of counteracting the latest malware

developments.

Loss of code. It is not uncommon for companies to develop, or outsource the

development of, bespoke software for internal use. If, after deployment, the

source code of such a project is destroyed, or if an outsourced company ceases

to trade, then it is not easy to modify the software since the source code is

now unavailable. It may be possible to consult to the original specifications

of the software to develop a new implementation, but in the absence of such

artefacts, companies must resort to reverse engineering. By analysing the

binary code it may be possible to develop a sufficient understanding of the

inner workings of the program to implement a new source code reimplemen-

tation. Alternatively, if the required modifications are small, the binary may

be modified in-place.

Penetration testing. The process of testing the resilience of a software product

to malicious parties is referred to as penetration testing (or just pen testing).

Typically, pen testing is outsourced to external companies whose job it is

to test the product against (amongst others) denial of service, unauthorised

access, privilege escalation and data breach. Since pen testing is conducted

without prior knowledge of the system (without access to source code or

documentation, so as to emulate a real attacker), pen testing may benefit

from reverse engineering. For example, reverse engineering may be applied

to gain an insight into security mechanisms. A thorough study may unveil

exploitable vulnerabilities in the system. Issues of this nature are reported

back to the software developers so that corrective measures (patching) may

be performed.

Interfacing and interoperating. Sometimes the need arises to interoperate with

existing software or hardware for which there is no readily available docu-

mentation or high-level code specifying the interface. In such cases it may be

possible to discover the workings of the interface via reverse engineering. A

rather famous case of this occurred in 1992 when Accolade Inc. were found

to have reverse engineered several software titles from Sega Enterprises. This

CHAPTER 1. INTRODUCTION 4

effort was expended for the sole purpose of developing unlicensed software

for use on Sega hardware [101].

The list is not exhaustive, but it covers many of the applications of reverse engi-

neering in industry today. To reiterate, the above applications of binary analysis

exist because access to high-level source code is not always possible. This is by

contrast to software verification, where the source code is usually available, but

analysis may occur at the binary level for different reasons.

Software verification is a quality assurance measure usually integrated into the

software development life-cycle and typically amounts to proving that a software

product conforms to a set of safety, correctness and reliability criteria. By satis-

fying these criteria, the developers can be confident in the robustness and safety

of the system as a whole. Several aspects of software can be verified in this way,

including:

Memory Accesses There is often the need to decide whether a piece of software

is correct with regards to the handling of memory buffers. For example,

writing past the end of an array is almost always incorrect. In languages

like C, where array writes are not checked, writing past the end of an array

usually invokes so-called undefined behaviour. When undefined behaviour

is invoked, the program continues to execute, but in an unpredictable and

most likely unintentional manner, usually ending with a crash. Worse, an

attacker who has studied the memory errors of a program that is deficient

in this way, may be able to write into other areas of memory, thus altering

the behaviour of the program for malicious purposes. We are of course

referring to the classic buffer overflow exploit, which in some cases can allow

unauthorised access or privilege escalation, etc. By deploying verification,

engineers can check that no out of bounds memory accesses may occur. By

doing so the engineer gains confidence that the program is free from the

reliability and security concerns associated with memory errors.

Error state reachability Sometimes programmers identify error states in their

programs which should not be reachable. In such situations it is common to

use an assertion to mark the error state and terminate the program should

it be reached. Adding assertions to programs is good software development

CHAPTER 1. INTRODUCTION 5

practice and can help to find bugs early in the software development life-

cycle. But how can a programmer be certain that an error state is never

reachable? Software verification can be deployed in order to prove that the

error state is not reached in any possible execution path. If indeed this is

the case, then the programmer gains confidence in the correctness of the

program. If the reachability of an error state cannot be disproved however,

then a bug may exist and further investigation is warranted.

Memory consumption Embedded systems are purpose built for a single task,

and thus to minimise costs, are designed with the bare minimum of hardware

required. Software targeting such architectures is expected to execute within

tight memory constraints, for example within a very small stack size. Since

in embedded architectures there is often no support for protected memory

pages, a stack overflow may corrupt other aspects of the system leading to

undefined behaviour, including crashes [24]. In order to avoid these cases,

it is possible to apply software verification to determine if the software in

question has a bounded stack size and that the maximum possible stack

consumption fits within the reserved memory allowance. Software satisfying

these criteria can be guaranteed not to crash as a consequence of stack

overflows.

Worst case execution time Some software systems include strict timing re-

quirements which, if violated, could yield severe consequences. In the auto-

motive industry, in-car embedded computers must respond quickly, as unex-

pected latency may endanger human lives [81]. Similarly, in the aerospace

industry, software product assurance standards force on-board spacecraft

software to be checked for unacceptable latency [48]. This kind of analysis

is referred to as worst case execution time analysis (WCET). The aim of

WCET is to compute the maximum possible time a given software task can

take to complete, which is then checked to be within predefined allowances.

A system which does not meet these requirements is deemed not fit for

purpose and must be revised.

Notice that in many of the above verification scenarios, the source code is

most likely available, yet in many cases it is beneficial to apply verification at

the binary level. This stems from the fact that verification at the source-level is

CHAPTER 1. INTRODUCTION 6

somewhat inopportune. After all it is not the source code that is executed, but

rather the binary counterpart created by the compiler and linker. Balakrishnan

et al. [7] show that the compilation step itself can transform program behaviour

such that the semantics of the end binary can be quite different from that of

the source code. Assumptions made by optimising compilers can even introduce

vulnerabilities; the code shown in Listing 1.1 shows one such case:

// password no longer used

memset(password , ’\0’, len); // line optimised away

free(password);

Listing 1.1: A compiler-induced vulnerability [7].

The code is supposed to overwrite the in-memory password buffer with zeroes be-

fore it is freed. The developer’s intent is commendable. By minimising the time

in which the password is stored in memory, it is much harder for an attacker to

capture the password. Yet this sense of security is merely an illusion, since in the

eyes of the compiler, to zero the buffer immediately prior to freeing it is a waste

of CPU cycles. As a consequence, the call to memset is removed by the optimiser.

When the resulting binary is executed, the password remains in memory for longer

than intended, i.e. until the buffer is reallocated and overwritten elsewhere. Note

that most source-level analyses would fail to detect this behaviour. Similarly, defi-

ciencies in the development tool-chain itself are hard to detect at the source-level.

Sadly, occurrences of tool-chain bugs are common and the problem is significant.

The LLVM (low level virtual machine) project documents broken versions of the

GNU tool-chain (compiler, linker and binutils) that generate incorrect code2.

In summary, there are many real-world applications for binary analysis in

today’s computing industry. But, given the motivation to analyse binary code,

how does one begin to tackle the problem? The approaches generally fall under

one of two broad categories: dynamic analysis and static analysis.

1.2 Static or Dynamic Analysis?

When planning a binary analysis, the first decision that must be made is whether

to approach the problem statically or dynamically:

2http://llvm.org/docs/GettingStarted.html

CHAPTER 1. INTRODUCTION 7

Dynamic Analysis Refers to the class of analyses which involve actually run-

ning code within the program’s execution environment.

Static Analysis By contrast to dynamic analyses, static analyses do not execute

any code concretely. Instead, execution is symbolic and may consider whole

classes of execution traces at once.

To help put these two approaches into context, consider the verification of a

binary program to check that no memory errors occur. To dynamically determine

this, a tool such as ValGrind [108] could be used. Such tooling supervises the

execution of the binary, scrutinising each memory access as it is encountered.

When execution terminates, a report is emitted detailing any invalid memory

reads or writes that were observed. Alternatively, a static analysis tool such as

the Clang analyser could be used3. Such a tool would attempt to verify the

memory safety of the program as a whole and without executing the binary at all.

To achieve this, a simplified model of the execution environment (abstraction) is

used to gather the possible states that may arise in concrete executions. From this

information it may be possible to infer whether the program is safe with regards

to memory handling.

The dynamic approach has the advantage that, because analysis is based upon

actual execution (concrete traces), little extra tooling is required and any success-

ful deduction comes with a proof of correctness in the form of an execution trace.

Unfortunately, dynamic analysis is often infeasible where, as in the example above,

there is the need to prove a property holds over all paths through the program.

To achieve this goal dynamically means exhaustively executing all possible paths

through the program; a task generally considered impossible for realistically-sized

programs due to the sheer number of execution paths existing. In his book [89],

Myers shows that there are an astonishing number of unique execution traces

through even seemly small programs. Consider the control flow graph (CFG)

shown in Figure 1. The numbered nodes represent program points, whereas the

edges depict transitions between program points. Program points 2 through 11

constitute the body of a loop. There are five paths through a single execution

of this loop alone, so if the loop were to execute 20 times, this gives a total of

520 + 519 + . . .+ 51 = 119209289550780 possible concrete traces. To scrutinise all

3http://clang-analyzer.llvm.org

CHAPTER 1. INTRODUCTION 8

of these executions would take a lifetime and more. This illustrates the need to

merge paths to prove that a property consistently holds. Often a weaker coverage

metric, such as function coverage or statement coverage can be used to exercise

a subset of the execution cases, but such an approach still fails to prove that a

property always holds for all paths.

1

2

3

4 5

6

7

9

8 10

11

12

i=0; i < 20; i++

Figure 1: There are a large number of traces through even small CFGs.

It is the path coverage problem that motivates the development of static anal-

yses. Static analyses do not suffer from this problem because, as previously men-

tioned, no code is actually executed, so many paths may be considered all at once.

Static analysis however, is not without its own drawbacks. First and foremost,

because no code is executed for real, the CFG of the program must be recovered

a priori. This poses a problem in itself and will serve as a starting point for the

contributions of this thesis.

1.3 Static CFG Recovery and Indirect Jumps

Recovering the CFG of a binary program requires significant effort. The raw

bit-stream of a binary is cumbersome to work with. This is hardly surprising,

as raw binary code was not designed to be decoded by anything other than the

CHAPTER 1. INTRODUCTION 9

CPU itself. To make a binary more comprehensible, typically the instruction

stream is translated into assembler mnemonics. This process is called disassembly.

For example, suppose the hex byte sequence 0x4883ec08e8f70100004883c408c3

appears at the address 0x400250 in an x86-64 binary. The disassembly for this

sequence of bytes is shown in Listing 1.2.

400250: 48 83 ec 08 sub rsp ,0x8

400254: e8 f7 01 00 00 call 0x400450

400259: 48 83 c4 08 add rsp ,0x8

40025d: c3 ret

Listing 1.2: Disassembly of the binary code using GNU objdump.

From the disassembled code it is easier to see the control flow of the program. The

listing above shows a function call and a return from the current function. Unfor-

tunately though, the process of disassembly is notoriously difficult. To appreciate

this, the two standard static disassembly approaches should be discussed.

Linear Sweep Disassembly Given a start address and an end address, linear

sweep will disassemble instructions in a straight line between the two ad-

dresses. When linear sweep encounters a control flow despatch (jmp, call,

etc.), no attempt is made to follow the despatch. Instead, disassembly con-

tinues at the address immediately after the despatch.

Recursive Traversal Disassembly A recursive traversal disassembler will dis-

assemble instructions linearly until a control flow despatch is met. Dis-

assembly then resumes (if possible) at the destination address(es) of the

despatch. Using this strategy, disassembly becomes an exercise in control

flow exploration.

Linear sweep disassembly is the simplest to implement of the two algorithms

and is usually sufficient if the code conforms to a strict and well-known com-

pilation model. For example, the GNU compilers generate code which can be

disassembled by the GNU objdump utility. Unfortunately, if the binary does not

conform to the correct compilation model, or if it has been obfuscated, then linear

sweep can inadvertently misinterpret the instruction stream [80]. In this case, the

recovered CFG will be incorrect and, in turn, any analysis underpinned by this

CHAPTER 1. INTRODUCTION 10

CFG will be unsound. Recursive traversal disassembly is less likely to fail in this

manner since it is driven from the control flow. However, a major hindrance with

recursive traversal is that often the target of a control flow despatch is computed

using register values; i.e. via an indirect jump. For example, the instruction

〈jmp [rax]〉 transfers execution to the address held in rax. Because recursive

traversal does not collect register values, when an indirect jump is encountered,

the only safe course of action is to assume that every address is a potential target

of the jump. The control flow graph of such a disassembly is inevitably a gross

over-approximation of the actual control flow graph, meaning that the precision

of an analysis underpinned by such a CFG will be poor. One may wonder why

recursive traversal could not be extended to collect register values, as this would

mean that the possible jump targets could be known and a more precise CFG

could be found. Yet this is not easy either because the register values themselves

can only be collected with the aid of a control flow graph. This cyclic problem is

often referred to as the “chicken and egg” problem [38].

It would seem that if a correct disassembly, and thus an accurate CFG, is

required, register tracking must be inherent in the disassembly and control flow

recovery process itself. Indeed this is the approach of Kinder et al. [71], whose

analysis grows the control flow graph incrementally based upon facts such as reg-

ister values. First, facts are propagated to trivially known control flow successors,

before a resolve operator is called. The resolve operator consults the currently

known facts to add new control flow edges. Upon the discovery of new edges,

facts may then be propagated further. This process continues until a fixpoint is

achieved, whereby an accurate CFG has been obtained.

Kinder’s analysis works on a toy assembler language, Jump. For real-world

assembler languages such as x86 or SPARC64, there are extra obstacles that must

be taken into consideration. Conditional branching in Jump, for example, has

been greatly simplified. A conditional branch in Jump takes the form 〈jmp e1, e2〉,
where e1 and e2 are expressions. If e1 is true, then transfer control flow to e2.

By contrast, x86 conditional branches typically consist of two instructions: one

instruction to assign some status flags, and a further instruction to conditionally

despatch control flow based upon the assignment of the status flags. This gives

rise to the problem of relating these Boolean status flags to control flow, both

statically and in an automated fashion.

CHAPTER 1. INTRODUCTION 11

Ideally, ranges or sets of register values could be statically inferred from binary

code. From this information it would be easy to gain an insight as to the possible

targets of indirect jumps. Furthermore, ranges and sets could help to decide if a

conditional jump is ever despatched (reachability analysis). Yet to infer ranges

and sets, low-level bitwise details such as the status flags must be accounted for.

In fact, assembler instructions can easily be modelled at the bit-level as Boolean

formulae [16]. After all, a computer system is merely a collection of Boolean

circuitry. Through the composition of smaller Boolean formulae, larger formulae

can be derived to model the basic blocks and functions from which a binary

program is built. This would suggest that it may be possible to leverage Boolean

decision procedures to help infer ranges and sets of register values. In turn this

information could be used to refine a control flow graph by, for example, inferring

a range of indirect jump targets. The first body of work in this thesis explores

exactly this. The work is separated into two parts (Chapters 3 and 4), beginning

with the following contributions presented in Chapter 3:

• A method is shown that automatically abstracts a set of Boolean satisfia-

bility (SAT) models as a range. To achieve this, the method uses repeated

calls to a SAT solver. This is referred to as range abstraction.

• Building upon range abstraction, it is shown that a range of models can be

iteratively refined into a successively more precise set of models. Eventually

the set converges upon a precise set of models. This is referred to as set

abstraction. The algorithm need not be run to termination and can be

halted in an anytime fashion, so as to terminate upon an over-approximation

(or under-approximation, if desired) of the set of models.

• It is shown that the techniques can be structured so as to exploit incremental

SAT, thereby eliminating duplication of solver work and in turn improving

solving times.

• Experimental results are shown which indicate that the method can infer

ranges and sets for Boolean formulae whose models are representative of a

set of indirect jump addresses.

To summarise, the above contributions represent the first step towards an

automated binary analysis which could automatically infer ranges (and sets) of

CHAPTER 1. INTRODUCTION 12

register values. In turn this information could be used to, for example, infer

control flow edges at indirect branching sites in binary code.

To apply range and set abstraction in this way, one would first encode CPU

instructions as Boolean formulae. To illustrate, consider the instruction sequence

〈shl eax, 2; jmp [eax]〉. Following the approach of [16], each register at each

program point would be encoded as a bit-vector and a Boolean formula would

relate the vectors. The 〈shl eax, 2〉 operation would be encoded as follows:

¬eax′0 ∧ ¬eax′1 ∧ (eax′2 ⇔ eax0) ∧ . . . ∧ (eax′31 ⇔ eax29)

where the vector eax = 〈eax0, . . . , eax31〉 represents eax prior to the shift, and

the vector eax′ = 〈eax′0, . . . , eax′31〉 represents the mutated value of eax after the

shift. It was hoped that, to infer the possible targets of the indirect jump, set

abstraction could be applied to infer the possible values that eax′ could assume.

Unfortunatley, it was found that the range and set abstraction algorithms

could not be applied directly to such a problem due to issues with termination.

This unexpected outcome relates to the fact that alone, range and set abstraction

are only able to infer ranges and sets for SAT models and not for subvectors over

which a model is defined. In the context of the above example, notice that each

possible eax′ value corresponds to an assignement to a sub-vector of the variables

over which an entire SAT model is defined. When set abstraction was applied to

infer ranges for this sub-vector, termination did not occur.

The work shown in Chapter 4 aims to remedy this by extending the range

and set abstraction methods presented in Chapter 3, allowing them to work over

sub-vectors of models:

• An explanation is offered as to why the plain range and set abstraction

algorithms are insufficient when applied to sub-vectors of SAT models.

• It is shown that ranges and sets can be inferred for sub-vectors of SAT

models using a quantified Boolean formula of the form ∀I. ∃T. f .

• A novel method is presented by which to eliminate the existential and uni-

versal quantifiers from the formula, thereby allowing it to be passed to the

range and set abstraction algorithms proposed in Chapter 3. The method

CHAPTER 1. INTRODUCTION 13

works by computing the prime implicates through mixed-integer linear pro-

gramming, namely through the generation of Chvátal cuts. Once the prime

implicates have been found, quantifier elimination is trivial.

• It is shown that, when computing the prime implicates, an objective function

and blocking constraints can be deployed to find short implicates so as to

avoid duplication of work.

• Experimental results are presented which suggest that the prime implicates

are found in much fewer operations than by traditional methods.

1.4 Range Analysis as an Optimisation Problem

So far it has been established that SAT solving and mathematical optimisation

can be used to infer the values of individual registers at select program points,

thus easing the recovery of the CFG of a binary program. The next body of

work assumes that the CFG is known and explores the possibility of conducting

a more general binary range analysis with decision procedures. In fact, there is

a significant advantage to this approach; fixpoint acceleration, as commonly used

in static analyses, is not required. To appreciate the force of this, the abstract

interpretation (AI) framework must first be discussed4.

Abstract interpretation is the de facto framework for static program analysis

and was devised in 1977 by Cousot and Cousot [31]. Since then, AI has been

widely adopted in both the industrial and academic program analysis communi-

ties. The idea behind abstract interpretation is that through a systematic loss of

precision, an over-approximation of the states that arise in concrete executions

can be computed in a tractable manner. The basic components of an abstract in-

terpretation are: a concrete domain, a collecting semantics, an abstract domain,

an abstract semantics and a solving strategy.

The concrete domain serves as a data structure to hold concrete state, i.e. the

actual states that can arise at each program point in concrete executions of the

program. The concrete domain should possess the ability to describe precisely

the program property of interest. This property could be the numeric values of

4An overview of AI is offered here, enough to explain the next set of contributions. The
underlying formalities are postponed until Chapter 2, where AI is discussed in detail.

CHAPTER 1. INTRODUCTION 14

the program variables, memory allocations and deallocations, timing constraints,

data types, etc. A range analysis is typically concerned with the values of program

variables, which at the binary level correspond to register values5. A set of n-tuples

could be used to represent the possible numeric values of n registers. One such

set would be held for each program point.

Accompanying the concrete domain is a collecting semantics, so-called because

it collects sets of possible concrete values. This is an inductive system of semantic

equations that describe how the concrete state is transformed and propagated

across the control flow of the program. Typically one semantic equation is defined

for each program statement. The solution to the collecting semantics describes

the possible concrete states that can arise at each point in the program. Solving

the collecting semantics directly is usually impractical and may not terminate.

Instead, AI proposes that the problem is transformed into a simplified, more

tractable form. This is achieved by selectively discarding information through the

process of abstraction.

The first step to applying abstraction is to select an abstract domain. The role

of the abstract domain is to provide a data structure for representing abstract

program states. The abstract domain should be able to over-approximate any

given concrete state efficiently. Many such domains exist, each targeting a different

purpose; to mention a few, the interval [31], the congruence [59], the octagon [86]

and the polyhedron [35]. In the context of range analysis, intervals are used to

abstract sets of concrete states. An interval describes a set of consecutive numeric

values as a lower and upper bound, denoted [l, u]. Using an interval, large sets

can be described at the cost of storing only the two bounding values, thus storage

requirements are very modest. Since a binary range analysis would typically be

required to abstract n registers at each program point, a single n-vector of intervals

would suffice to represent the abstract state at each program point.

Once the concrete and abstract domains have been selected, the correspon-

dence between them should be identified. The correspondence is characterised by

a pair of mappings: α (abstraction) and γ (concretisation). The former maps ele-

ments of the concrete domain to elements of the abstract domain. Conversely, the

latter maps elements of the abstract domain to elements of the concrete domain.

Suppose an analysis uses a set of 2-vectors to track the concrete register values

5For now, memory values are not considered.

CHAPTER 1. INTRODUCTION 15

that can arise at each program point. The interval abstraction of the concrete

state {〈0, 6〉, 〈1, 6〉, 〈1, 8〉} is:

α({〈0, 6〉, 〈1, 6〉, 〈1, 8〉}) = 〈[0, 1], [6, 8]〉

Conversely, the concretisation of 〈[0, 1], [6, 8]〉 is:

γ(〈[0, 1], [6, 8]〉) = {〈0, 6〉, 〈0, 7〉, 〈0, 8〉, 〈1, 6〉, 〈1, 7〉, 〈1, 8〉}

Notice that γ(α({〈0, 6〉, 〈1, 6〉, 〈1, 8〉})) ⊇ {〈0, 6〉, 〈1, 6〉, 〈1, 8〉}. The imprecision

incurred through over-approximation is the price paid for computational tractabil-

ity. An over-approximation is accepted as a sound abstraction, since all possible

states are captured.

Next, the abstract semantics is defined. The role of the abstract semantics

is to describe the effect of program statements upon the abstracted state. The

abstract semantics, like the collecting semantics, is a system of semantic fixpoint

equations. Again, for each program statement, one semantic equation is defined.

Unlike the collecting semantics, however, the abstract semantic equations operate

over elements of the abstract domain. It is this system of equations which is

solved. The least solution, although approximate, it is often accurate enough to

prove that certain properties hold across all paths of the program. For example,

range information can be used to prove that all memory writes are within range

and this can help to show that a program is not susceptible to buffer overflow

vulnerabilities.

The solving of the abstract semantics itself typically involves repeatedly apply-

ing the fixpoint equations of the abstract semantics until a fixpoint is met (Kleene

iteration). This solving strategy is effective for code without loops or for code

with short-running loops, however, long-running loops may arise. Long running

loops induce long ascending chains of abstract states, meaning that to achieve fix-

point convergence, the semantic equations must be applied many times. In turn

this can lead to suboptimal solving times. To illustrate, consider the simple loop

shown in Listing 1.3.

Suppose an analysis uses intervals drawn fromD : {[l, u] | l, u ∈ {0, . . . , 65535}∧
l ≤ u} as the abstract domain. The analysis would first compute i = [0, 0] for the

CHAPTER 1. INTRODUCTION 16

entry to the loop. Subsequent iterations would compute:

〈[0, 1], [0, 2], . . . , [0, 9999], [0, 10000], [0, 10000]〉

Since the abstract state did not change between the last two iterations, a fixpoint

has been reached, but convergence takes 10001 iterative solving steps. Evaluating

the abstract equations this many times is likely to be time consuming. Further-

more, under certain circumstances, it is possible that the fixpoint computation

never terminates.

for (uint16_t i = 0; i < 10000; i++) {

...

}

Listing 1.3: A long-running loop.

To improve solving times, fixpoint convergence must be achieved in fewer

solving iterations. To this end, fixpoint acceleration techniques, such as widen-

ing [31, 76, 109], have been proposed. For intervals, the standard widening works

as follows. If after a predetermined number of iterations, an abstract state has not

converged upon a fixpoint, then unstable bounds are proactively extrapolated so

as to skip over a number of intermediate iterations in one leap. Suppose standard

widening were to be applied to the previous example if a fixpoint is not reached

after three iterations. The analysis would compute 〈[0, 0], [0, 1], [0, 2], [0, 65535]〉.
This is both safe and ensures fast termination, but has impact upon the precision

of the analysis. Notice that the best fixpoint (or least-fixpoint) is [0, 10000] but

widening finds a less precise fixpoint [0, 65535]. The weaker solution is referred to

as a post-fixpoint.

Obviously this further loss of precision is undesired. Ideally, the fixpoint that

is found is the best possible characterisation of the abstract semantics. This

motivates the development of new solving techniques which altogether dispose of

Kleene iteration and fixpoint acceleration techniques such as widening. The next

body of work of the thesis explores the possibility of replacing Kleene iteration

with mathematical optimisation. The work is presented in two parts (Chapters 5

and 6). In Chapter 5:

• It is shown that the abstract semantics of a binary interval analysis can be

CHAPTER 1. INTRODUCTION 17

re-formulated as a system of min and max constraints.

• A method is shown for solving the reformulated abstract semantics. The

solving technique computes the least-fixpoint as a series of linear program-

ming problems, thus without the need for Kleene iteration or fixpoint accel-

eration techniques.

• It is shown that the number of linear programs that must be solved can be

minimised through the use of heuristics. Experimental results are shown to

support this claim.

Finally, Chapter 6 proposes an extension to the work shown in Chapter 5,

which allows the method to account for integer overflow scenarios.

At the fundamental level, a computer integer is a collection of bits stored in a

register. An unsigned 32-bit integer is a vector x = 〈x0, . . . , x31〉 whose interpre-

tation is
∑31

i=0 2ixi. Such an interpretation allows the representation of integers

between 0 and 232 − 1. Signed values are stored using two’s complement encod-

ing. A signed 32-bit integer is the same bit-vector, just interpreted differently,

namely as −231x31 +
∑30

i=0 2ixi. The signed interpretation of the vector allows

the encoding of integers between −231 and 231 − 1. Notice that since there are

a finite number of bits in which to encode numeric values, the range of values

which a register may assume is bounded. Now consider the following snippet of

x86 assembler code:

mov eax , 0xffffffff

add eax , 0x5

Listing 1.4: Integer overflow scenario.

The first instruction moves a constant hex value into the 32-bit eax register. After

the execution of this instruction eax may either be interpreted as 232 − 1 in an

unsigned context, or as -1 in a signed context. The second instruction adds five

to the value of the eax register. Notice that if eax is interpreted unsigned, then

(232− 1) + 5 is outside of the numeric range that the register can express, yet this

code is completely valid. The exact outcome varies between hardware platforms,

but in most general purpose CPU architectures, an integer overflow occurs. In

this setting, when the result of an arithmetic operation is outside of the integer

CHAPTER 1. INTRODUCTION 18

range of the destination register, the result wraps around like a modulo system

and a flag in the status register is set. At the end of the code snippet shown in

Listing 1.4, the unsigned value of eax is equal to 4, since (232−1)+5 mod 232 = 4.

Wrapping is one intricacy which must be taken into consideration, but wrap-

ping itself depends upon the intended interpretation of a register. Consider that

eax is interpreted signed in the above snippet. In this case 0xffffffff corre-

sponds to the signed value -1 and −1 + 5 = 4. Notice how no integer overflow

occurs for the signed interpretation of eax, whereas an overflow does occur for an

unsigned interpretation of eax. In fact, when the add instruction computes the

value of the destination register, it does so with no regard for signedness. The

two’s complement encoding ensures that the result is correct for both signed and

unsigned interpretations of eax. This is shown diagrammatically in Figure 2.

+

Register Width (32-bits)Carry-out

232 − 1

5

4

+

(truncated)

= =

MSB

Unsigned
arith.

Signed
arith.

−1

5

4

+

=

1111 1111
0xff

1111 1111
0xff

1111 1111
0xff

1111 11110000 0000
0x00 0xff

0000 0000 0000 0000 0000 0000 0000 0101
0x00 0x00 0x00 0x05

0000 0000
0x00

0000 0000 0000 0000 0000 0000
0x00 0x00 0x00

0000 0100
0x04

0000 0001
0x01

Figure 2: Signed and unsigned interpretations of 〈add eax, 5〉.

Whilst it may be tempting to ignore the awkward details of integer overflows,

to do so is unsound. Besides, some of the most subtle software bugs stem from

unforeseen integer overflow scenarios. The infamous heap overflow vulnerability

(discussed later in Chapter 6) usually manifests itself as an overlooked integer over-

flow. Further, sometimes integer overflow behaviours are a part of the intended

functionality of a program. For these reasons, the range analysis described in

Chapter 5 should be extended to cater for integer overflows. However, the faithful

CHAPTER 1. INTRODUCTION 19

modelling of these scenarios represents a problem. Recall that the range analy-

sis proposed in Chapter 5 is underpinned by linear optimisation. It is not clear

how non-linear modular arithmetic should be incorporated into linear programs.

Furthermore, modular arithmetic cannot be encoded as min/max constraints, so

the binary search method shown in Chapter 5 does not help. One possible course

of action is to make a conservative over-approximation for every operation that

may cause an overflow, but since most arithmetic operations fall into this cate-

gory, such an approach is likely to produce very weak results. The problem is

further complicated by the differing overflow behaviours of signed and unsigned

arithmetic.

Motivated by the need to integrate integer overflow (and thus modular arith-

metic) into the range analysis described in Chapter 5, the following contributions

are presented in Chapter 6:

• It is shown that modulo arithmetic operations are merely piecewise linear

functions.

• A framework is presented by which piecewise linear functions can be encoded

within a mixed-integer linear program. This allows integer overflow scenarios

to be encoded within the range analysis.

• It is shown that by inferring the intended interpretations of the registers

of a binary program a priori, the number of optimisation variables required

can be reduced, thereby improving the performance of the analysis. Exper-

imental results are shown to support this.

1.5 Roadmap

The remainder of this thesis is structured as follows. Since the work presented is

closely related to abstract interpretation, Chapter 2 discusses AI in detail, giving

examples. Chapter 3 describes how to abstract SAT models as ranges (and sets).

Chapter 4 then shows how the algorithms from Chapter 3 can, when complimented

with quantified Boolean formulae, be harnessed to incrementally infer control flow

from binary code that includes indirect jumps. The focus of the thesis then shifts

slightly, assuming that the control graph has been acquired. Chapter 5 introduces

CHAPTER 1. INTRODUCTION 20

a new (and more general) range analysis underpinned by linear optimisation, thus

sidestepping the need for fixpoint acceleration techniques. Chapter 6 extends the

method shown in Chapter 5, allowing integer overflow scenarios to be modelled.

Chapter 7 discusses related work and finally, Chapter 8 draws this thesis to a close

with some concluding remarks and the discussion of some possible future work.

Chapter 2

Abstract Interpretation

Chapter 1 offered a brief overview of the abstract interpretation framework. This

chapter describes the framework in more detail through the development of several

simple abstract interpretations.

2.1 A Toy Programming Language

The example interpretations presented in this chapter will analyse programs writ-

ten in a simple grammar which shall be referred to as G. The language reflects

most of the features of a typical programming language: variables, assignment,

arithmetic, conditional branches and loops. The grammar of G is shown in Backus-

Naur form in Figure 3. To simplify the presentation, first, integer variables may be

arbitrarily large or small and the same applies for integer constants (fixed-width

integers are studied in Chapter 6). Secondly, assume that the three variables

available in G programs (x, y and z) are always in scope, even if they are not

used. This means that the example interpretations need not be parameterised

by the set of variables in scope. Finally, assume all operator associativity and

precedence is as one might expect.

In the following sections, a discussion is offered regarding the design of Galois-

connection-based abstract interpretations [32] for G programs. The theme of the

examples will be related to inferring variable signedness at each program point.

First, an analysis is presented which abstracts numeric values as a set of possible

signs. After identifying the shortcomings of such a coarse domain, the interpreta-

tion is revised to intervals. Issues relating to slow fixpoint convergence are then

21

CHAPTER 2. ABSTRACT INTERPRETATION 22

Var ::= x | y | z
RelOp ::= > | ≥ | < | ≤ | = | 6=
ArithOp ::= + | − | · | ÷
Term ::= Z | Var
Expr ::= Term

| Term ArithOp Term
Cond ::= (Term RelOp Term)
Stmt ::= | Var ← Expr;

| if Cond then StmtList fi

| if Cond then StmtList else StmtList fi

| while Cond do StmtList done

StmtList ::= Stmt StmtList | ε
Prog ::= StmtList

Figure 3: The grammar of the toy language, G.

studied, before a fixpoint acceleration tactic is proposed. It is shown that whilst

fixpoint acceleration guarantees fast termination, the precision of the analysis may

be compromised.

2.2 Abstraction with Signs

Consider the small G program example1.g and the corresponding control flow

graph (CFG) shown in Figure 4. Each statement is numbered, thus dictating a

set of program points. Each program point refers to the program state immedi-

ately prior to the execution of the corresponding statement. Program points are

henceforth referred to as Pi, where in this case 1 ≤ i ≤ 11. The program consists

of a simple loop with a conditional nested inside. In each arm of the conditional,

x is modified; in one arm by addition and in the other, by subtraction. The pro-

gram terminates when x exceeds 9. Now suppose that an abstract interpretation

is required to confirm that the value of x is never negative after its initialisation at

P3. It should be clear from a cursory inspection of the program that this is indeed

the case. The remainder of this section will discuss how an abstract interpretation

can be formulated to formally prove this claim.

CHAPTER 2. ABSTRACT INTERPRETATION 23

1: y← −3;
2: z← 2;
3: x← 0;
4: while (x < 10) do
5: if (x < 5) then
6: x← x− y;
7: else

8: x← x + z;
9: fi

10: done

11:

1

2

3

4

5

6 8

97

10

1111

Figure 4: example1.g.

2.2.1 Concrete Domain and Collecting Semantics

Recall from Chapter 1 that the first step in designing an abstract interpretation is

to define a concrete domain. For a signedness analysis the concrete domain needs

the ability to describe (precisely) the possible signs of each of the three program

variables at a single point in the program. Let signedness be defined as follows:

Definition 1 (Signedness). A value less than zero is negative. A value greater

than zero is positive. Zero is a special case which is neither positive nor negative.

The possible signs of a variable at a single program point is both naturally and

precisely described by a set of possible numeric values that the variable may

assume. Such a set is referred to as a value-set. Formally, the domain of value-

sets, V , is the set of all possible sets of integers, i.e. ℘(Z). From a value-set

it is possible to say whether a variable may be positive, negative, zero, or any

combination of these. Because G programs always deploy three variables, x, y

and z, the domain of value-sets is lifted so as to accommodate the values of the

CHAPTER 2. ABSTRACT INTERPRETATION 24

three variables. This is achieved by using a set of 3-tuples. Formally, the set of

all possible sets of 3-tuples, L, is defined as ℘(Z3); this shall serve as the concrete

domain. An ordering is placed upon L, thus forming a complete (but infinite)

lattice 〈L,⊆L,∪L,∩L〉.
Definition 2 (The ordering and domain operations of L).

⊆L: L× L a ⊆L b ⇐⇒ a ⊆ b

∪L : L× L → L a ∪L b , a ∪ b
∩L : L× L → L a ∩L b , a ∩ b

The bottom element of the lattice, ⊥L = ∅, indicates the absence of values,

whereas the top element, >L = Z3, indicates that the variables could take any

value.

Next, a collecting semantics is defined. The role of the collecting semantics is to

enumerate the values that arise at each program point. This amounts to, for each

program point Pi, specifying a semantic equation that characterises operationally

the concrete program state. Each state Si is an element drawn from the concrete

domain and is defined in terms of predecessor program points as described by the

control flow of the program. For example, the values that could arise at P3 are

described by the set S3 ∈ L, which is defined in terms of S2 ∈ L. If a program

point has multiple predecessors, as is the case for P4, then the semantic equation

describing the state must include a join (∪L) to merge the possible concrete states

from both predecessor states.

The collecting semantics of example1.g is shown below. For each program

point the semantic equation is shown along with a brief description of its con-

struction:

• P1: Prior to the start of program execution, the values of the variables x, y and

z are uninitialised and thus could assume any value:

S1 = >L

• P2: y is initialised to -3. The other variables, x and z, remain the same:

S2 = {〈x,−3, z〉 | 〈x, y, z〉 ∈ S1}

CHAPTER 2. ABSTRACT INTERPRETATION 25

• P3: z is initialised to 2. Other variables remain the same:

S3 = {〈x, y, 2〉 | 〈x, y, z〉 ∈ S2}

• P4: A control flow join occurs. One incoming edge initialises x to 0:

S4 = {〈0, y, z〉 | 〈x, y, z〉 ∈ S3} ∪L S10

• P5: Execution enters the loop, so the loop condition x < 10 is true. To reflect

this the values of x are restricted:

S5 = {〈x, y, z〉 | 〈x, y, z〉 ∈ S4 ∧ x < 10}

• P6: Execution enters the true branch of the conditional, therefore x < 5 holds.

Again, x is restricted:

S6 = {〈x, y, z〉 | 〈x, y, z〉 ∈ S5 ∧ x < 5}

• P7: The value of y is subtracted from x. It is assumed that integer underflow

may not occur:

S7 = {〈x− y, y, z〉 | 〈x, y, z〉 ∈ S6}

• P8: Execution enters the false branch of the conditional, x < 5, therefore the

converse (x ≥ 5) holds. x is restricted to reflect this:

S8 = {〈x, y, z〉 | 〈x, y, z〉 ∈ S5 ∧ x ≥ 5}

• P9: The value of z is added to x:

S9 = {〈x+ z, y, z〉 | 〈x, y, z〉 ∈ S8}

• P10: Control flow joins from P7 and P9:

S10 = S7 ∪L S9

CHAPTER 2. ABSTRACT INTERPRETATION 26

• P11: Execution leaves the loop, therefore the converse of the loop condition

holds:

S11 = {〈x, y, z〉 | 〈x, y, z〉 ∈ S4 ∧ x ≥ 10}

The least solution of the collecting semantics describes the values that can

arise at each point in the program. From this information it is possible, at least

theoretically, to decide the signage of x at each point in the program. In reality

though, the least solution of the collecting semantics is rarely computable due to

resource limits. In principle, the fixpoint equations could be solved by Kleene

iteration, i.e. repeated evaluation until a fixpoint is found. However, notice that

the height of the L lattice is not finite. This means that the Si sets could grow

arbitrarily, meaning that Kleene iteration may not terminate. From a practical

standpoint, a non-terminating analysis is useless since no information is inferred.

Even supposing that the concrete domain were finite, there is still the possibility

that the sets could become large and unmanageable. Abstraction aims to over-

come these limitations. By applying abstraction, it is possible to approximate the

least solution of the collecting semantics efficiently, whilst also guaranteeing ter-

mination. The remainder of this section will demonstrate by applying abstraction

to the collecting semantics of example1.g.

2.2.2 Abstract Domain and Domain Correspondence

The first step of abstraction requires the definition of an abstract domain. The

role of the abstract domain is to approximate elements of the concrete domain.

Recall that the aim of the analysis is to determine the possible signs of each

variable at each program point and specifically, if x can ever be negative after its

initialisation. To this end, the abstract domain needs to express that a variable

at any given program point could be positive, negative, zero, or any combination

of these. Therefore, it seems natural to abstract the state of a single variable at

any given program point as an element drawn from ℘({−, 0,+}). Let this set be

denoted W . The signs of the three variables at any given program point is then

an element drawn from W 3. Let this set be denoted M . This shall serve as the

abstract domain. Note that the largest possible element of M in terms of storage

is 〈{−, 0,+}, {−, 0,+}, {−, 0,+}〉, which can easily be encoded in a few bytes.

The domain is also finite, which contributes to a termination argument (discussed

CHAPTER 2. ABSTRACT INTERPRETATION 27

later in Section 2.2.4, Page 32).

Next, an ordering is placed upon W , therefore inducing a complete and finite

lattice 〈W,vW ,tW ,uW 〉:

Definition 3 (Ordering and domain operations of W).

s vW s′ ⇐⇒ s ⊆ s′

s tW s′ , s ∪ s′
s uW s′ , s ∩ s′

The bottom element ⊥W = ∅ signifies the absence of sign information and the

top element >W = {−, 0,+} represents any possible sign. Note the distinction

between ⊥W and >W : the former indicates that nothing is described, whereas the

latter indicates that nothing is known.

The ordering and domain operations of W are then lifted pointwise to accom-

modate M , thus also forming a complete and finite lattice 〈M,vM ,tM ,uM):

Definition 4 (Ordering and domain operations of M).

〈x, y, z〉 vM 〈x′, y′, z′〉 ⇐⇒ x vW x′ ∧ y vW y′ ∧ z vW z′

〈x, y, z〉 tM 〈x′, y′, z′〉 , 〈x tW x′, y tW y′, z tW z′〉
〈x, y, z〉 uM 〈x′, y′, z′〉 , 〈x uW x′, y uW y′, z uW z′〉

The bottom element ⊥M = 〈∅, ∅, ∅〉 indicates that no variable can take any sign.

The top element >M = 〈{−, 0,+}, {−, 0,+}, {−, 0,+}〉 indicates that the vari-

ables may be of any sign.

Domain Correspondence

With the domains in place, a domain correspondence is next defined. Specifi-

cally, the abstraction mapping αL : L→ M over-approximates an element of the

concrete domain as an element of the abstract domain.

CHAPTER 2. ABSTRACT INTERPRETATION 28

Definition 5 (Abstraction mapping).

αL(l) = 〈x, y, z〉
where x = {sign(x′) | 〈x′, y′, z′〉 ∈ l} ∧

y = {sign(y′) | 〈x′, y′, z′〉 ∈ l} ∧
z = {sign(z′) | 〈x′, y′, z′〉 ∈ l}

where the function sign : Z→ {−, 0,+} maps an arbitrary integer to its sign.

sign(n) =


− if n < 0

0 if n = 0

+ if n > 0

The concretisation mapping γM : M → L then describes the concrete states

expressed by an element of the abstract domain.

Definition 6 (Concretisation mapping).

γM (〈x, y, z〉) = {〈x′, y′, z′〉 | x′ ∈ from sign(x) ∧ y′ ∈ from sign(y) ∧ z′ ∈ from sign(z) }

where the function from sign : W → V maps a variable’s abstract sign information

to possible integer values:

from sign(s) = N ∪ Z ∪ P

where : N =

{−∞, . . . ,−1} if (−) ∈ s
∅ otherwise

∧
Z =

{0} if 0 ∈ s
∅ otherwise

∧
P =

{1, . . . ,+∞} if (+) ∈ s
∅ otherwise

Note the concretisation mapping can be defined directly in terms of the abstrac-

tion mapping, i.e. γM(m) = ∪L{l ∈ L | αL(l) vM m}, however, to aid reader

comprehension, a more explicit definition is used.

CHAPTER 2. ABSTRACT INTERPRETATION 29

The α and γ mappings can be shown to form a Galois connection, meaning

that every concrete state has a unique best abstraction. This is a useful alge-

braic property for an abstract interpretation, since it means that any element of

the concrete domain can be abstracted and furthermore, solving may not cycle

between equivalent abstractions in a fixpoint computation.

Definition 7 (Galois Connection [32]). Consider two partially ordered domains

〈C,⊆C〉 and 〈A,vA〉. The correspondence between C and A is described by ab-

straction and concretisation mappings, αC : C → A and γA : A → C. The

domains A and C form a Galois connection, written A −−−−→←−−−−
γA

αC
C, when:

∀c ∈ C. ∀a ∈ A. αC(c) vA a ⇐⇒ c ⊆C γA(a)

Showing that the correspondence between L and M forms a Galois connection

amounts to showing that ∀l ∈ L. ∀m ∈ M. αL(l) vM m ⇐⇒ l ⊆L γM(m). A

proof of this is shown in Corollary 1 on Page 166.

2.2.3 Abstract Semantics

With the abstract domain and the domain correspondence defined, the abstract

semantics is now specified. The abstract semantics, like the collecting semantics,

describe the effect that each program statement has upon the analysis. The

abstract semantics, however, works over elements of the abstract domain. As

with the concrete semantics, one semantic equation is defined for each program

point, thus for each Pi, an equation S ′i defines the abstract state:

• P1: Prior to the start of program execution, the program variables are unini-

tialised and could take any value:

S ′1 = >M

• P2: y is assigned the value -3, therefore y is negative:

S ′2 = 〈x, {−}, z〉 where 〈x, y, z〉 = S ′1

CHAPTER 2. ABSTRACT INTERPRETATION 30

• P3: z is assigned the value 2, therefore z is positive:

S ′3 = 〈x, y, {+}〉 where 〈x, y, z〉 = S ′2

• P4: Control flow converges from P3 and P10. The update of x to zero and the

merge of the state from P10 must be captured:

S ′4 = 〈{0}, y, z〉 tM S ′10 where 〈x, y, z〉 = S ′3

• P5: Control flow enters the loop body, so x < 10 holds. To reflect this, the

possible signs of x are restricted. However, because ∀s ∈ {−, 0,+}. ∃x ∈
Z. x < 10 ∧ sign(x) = s, no suitable restriction exists. This is a symptom

of the coarseness of the abstract domain:

S ′5 = S ′4

• P6: Control flow enters the true branch of the conditional x < 5. Again, no

suitable restriction exists:

S ′6 = S ′5

• P7: The value of y is subtracted from x. The following definitions are used to

capture this update:

Definition 8 (Subtraction of single signs). The infix function −′
W

: {−, 0,+}×
{−, 0,+} → W maps a single sign, x, and a single sign, y, to a set of signs

that can result from subtraction:

x−′
W
y =



{−} if (x = (−) ∧ y ∈ {0,+}) ∨ (x = 0 ∧ y = (+))

{0} if x = y = 0

{+} if (x = (+) ∧ y ∈ {−, 0}) ∨ (x = 0 ∧ y = (−))

>W otherwise

The above function is then lifted to work over sets of signs.

CHAPTER 2. ABSTRACT INTERPRETATION 31

Definition 9 (Subtraction of elements of W (sets of signs)). The infix func-

tion −
W

: W ×W → W maps a set of signs x and a set of signs y to a set

of signs that can result from subtraction:

x−
W
y =

⋃
{m−′

W
n | m ∈ x ∧ n ∈ y}

The abstract equation for P7 is then:

S ′7 = 〈x−
W
y, y, z〉 where 〈x, y, z〉 = S ′6

• P8: Execution enters the false branch of the conditional x < 5, therefore the

converse (x ≥ 5) holds. Since all integers greater than or equal to 5 are

positive, x is restricted to positive signs only:

S ′8 = 〈x uW {+}, y, z〉 where 〈x, y, z〉 = S ′5

• P9: The value of z is added to x. The semantics of addition of signs works

analogously to the semantics of subtraction of signs:

Definition 10 (Addition of single signs). The infix function, +′
W

: {−, 0,+}×
{−, 0,+} → W , computes the outcome of the addition of two signs:

x+′
W
y =



{−} if (x = (−) ∧ y ∈ {−, 0}) ∨ (x ∈ {−, 0} ∧ y = (−))

{0} if x = y = 0

{+} if (x = (+) ∧ y ∈ {0,+}) ∨ (x ∈ {0,+} ∧ y = (+))

>W otherwise

Definition 11 (Addition of elements of W). The infix function +
W

: W ×
W → W computes the result of the addition of two sets of signs:

x+
W
y =

⋃
{m+′

W
n | m ∈ x ∧ n ∈ y}

The abstract equation for P9 is then:

S ′9 = 〈x+
W
z, y, z〉 where 〈x, y, z〉 = S ′8

CHAPTER 2. ABSTRACT INTERPRETATION 32

• P10: Control flow joins from P7 and P9:

S ′10 = S ′7 tM S ′9

• P11: Execution leaves the while loop, so the loop condition x < 10 is false. Since

all integers greater than or equal to 10 are positive, the sign of x is restricted

to positive:

S ′11 = 〈x uW {+}, y, z〉 where 〈x, y, z〉 = S ′4

2.2.4 Termination and Monotonicity

The abstract semantics are almost ready to be solved. However, first an argument

for termination needs to be constructed. The sequence of abstract states that arise

at a given program point over the course of solving is referred to as a chain. Each

element in the chain is the result of one solving iteration. If the domains form a

Galois connection, the abstract lattice is of finite height and the abstract semantics

is monotonic, then termination is guaranteed under the ascending chain condition.

Since L −−−−→←−−−−
αL

γM
M is a Galois connection and the abstract lattice is of finite height,

all that remains is to show that the abstract semantics is monotonic.

Definition 12 (Monotonic Function). Consider a function f : D → D where D

is an ordered set; f is a monotonic function if it preserves the ordering ≤D of the

elements of D:

∀a ∈ D. ∀b ∈ D. a ≤D b =⇒ f(a) ≤D f(b)

Each abstract semantic equation S ′i can be interpreted as a transfer function F ′i

which maps direct predecessor states to a new state. For example, S ′2 can be

interpreted as a function F ′2 : M →M such that F ′2(〈x, y, z〉) = 〈x, {−}, z〉. Then

F ′2 is monotonic if ∀a ∈M. ∀b ∈M. a vM b =⇒ F ′2(a) vM F ′2(b). The proofs of

monotonicity are given on Page 167 (Theorem 3).

2.2.5 Solving

Finally, the abstract semantics are solved to find an over-approximation of the

collecting semantics. From this approximation a deduction can be made as to

CHAPTER 2. ABSTRACT INTERPRETATION 33

Pi
S ′i ∈M

Iteration 1 Iteration 2
P1 >M >M
P2 〈{−, 0,+}, {−}, {−, 0,+}〉 〈{−, 0,+}, {−}, {−, 0,+}〉
P3 〈{−, 0,+}, {−}, {+}〉 〈{−, 0,+}, {−}, {+}〉
P4 〈{0}, {−}, {+}〉 〈{0,+}, {−}, {+}〉
P5 〈{0}, {−}, {+}〉 〈{0,+}, {−}, {+}〉
P6 〈{0}, {−}, {+}〉 〈{0,+}, {−}, {+}〉
P7 〈{+}, {−}, {+}〉 〈{+}, {−}, {+}〉
P8 〈{}, {−}, {+}〉 〈{+}, {−}, {+}〉
P9 〈{}, {−}, {+}〉 〈{+}, {−}, {+}〉
P10 〈{+}, {−}, {+}〉 〈{+}, {−}, {+}〉
P11 〈{+}, {−}, {+}〉 〈{+}, {−}, {+}〉

Table 1: Fixpoint computation (via Kleene iteration) applied to the abstract
semantics for example1.g.

whether x is indeed always positive after its initialisation. Typically, the abstract

semantics are solved via Kleene iteration, which works as follows. Prior to solving,

each S ′i is initialised to⊥M . Then each abstract semantic equation is evaluated one

after the other. Further iterations are performed until no S ′i set changes between

consecutive iterations; in other words, until a fixpoint has been met. When a

fixpoint is met, a solution to the abstract semantics has been found.

The first two iterations of the solving process are shown in Table 1. Iteration

3 is not shown, since the outcome is the same as for iteration 2, meaning that

solving has converged. From the finalised abstract states, it is easy to see that x

cannot be negative after program point 3, i.e. ∀〈x, y, z〉 ∈ {S ′4, . . . , S ′11}. (−) 6∈ x.

2.3 Range Analysis with Intervals

In the last section, an interpretation was designed which abstracted numeric values

as signs to determine whether a variable could turn negative. The abstraction was

sufficient in proving such a property for example1.g, but unfortunately in many

cases the use of such a coarse abstract domain will introduce false positives. In

the case of the previous example, a false positive would manifest as the possibility

of a negative value for x after P4. In concrete executions it is impossible for x to

be negative between P4 and P11.

CHAPTER 2. ABSTRACT INTERPRETATION 34

1: x ← 5;
2: while x > 0 do
3: x ← x −1
4: done
5:

1

2

3

4

5

Figure 5: example2.g.

To illustrate how a coarse abstraction can introduce false positives, consider

the simple program example2.g (shown in Figure 5). From a cursory inspection

of the program, it should be clear that after x has been initialised it can only

assume positive or zero values. Suppose that the sign abstraction from the last

section is applied to this program. The abstract semantics is:

S ′1 = >M
S ′2 = 〈{+}, y, z〉 tM S ′4 where 〈x, y, z〉 = S ′1

S ′3 = 〈x uW {+}, y, z〉 where 〈x, y, z〉 = S ′2

S ′4 = 〈x−
W
{+}, y, z} where 〈x, y, z〉 = S ′3

S ′5 = 〈x uW {−, 0}, y, z〉 where 〈x, y, z〉 = S ′2

The abstract equations can be shown to be monotonic analogously to before.

Solving via Kleene iteration computes the information shown in Table 2. The

least-fixpoint is found after two iterations. Notice that the analysis was unable

to determine that after P1, the variable x may not be negative. This stems from

the fact that a positive number minus a positive number could yield either a

positive, zero, or negative result. Consequently, after iteration 1, the abstraction

of x at P4 must be approximated as >W . Because (−) ∈ >W it cannot be

deduced that x is not negative at P4. This is a false positive since in concrete

executions of the program, x is never less than one at P3, so the smallest possible

value of x at P4 is zero. Whilst this is not a problem from a soundness point of

view (the inferred information safely over-approximates the possible states), false

positives are undesirable because manual intervention is required to determine if

CHAPTER 2. ABSTRACT INTERPRETATION 35

Pi
Iteration

1 2
1 〈>W ,>W ,>W 〉 〈>W ,>W ,>W 〉
2 〈{+},>W ,>W 〉 〈>W ,>W ,>W 〉
3 〈{+},>W ,>W 〉 〈{+},>W ,>W 〉
4 〈>W ,>W ,>W 〉 〈>W ,>W ,>W 〉
5 〈⊥W ,>W ,>W 〉 〈{−, 0},>W ,>W 〉

Table 2: False positives introduced via a coarse abstract domain.

they are faults. False positives are, in most cases, unavoidable due to the over-

approximation introduced by abstraction. Nevertheless, the fewer false positives

inferred the better, as this means fewer cases must be checked by hand.

To eliminate excessive false positives, a more expressive abstract domain, such

as the interval domain, could be deployed. By tracking ranges of values, the

analysis is able to collect more precise information about the possible values of

the program variables, whilst keeping the cost of the analysis low. In the remainder

of this section, a revised abstraction is developed which is based upon the interval

domain. Using this revised abstraction it is shown that it is possible to infer more

precise sign information for example2.g.

2.3.1 Revised Abstraction

Recall from the introductory chapter, that an interval is a compact way of ap-

proximating a set of numeric values. Let the domain of intervals I = {∅}∪{[l, u] |
l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u}. Note that the extremal bounds, −∞ and +∞,

are symbolic values that bound any integer value below and above respectively.

The domain forms a complete lattice 〈I,vI ,tI ,uI〉:

CHAPTER 2. ABSTRACT INTERPRETATION 36

Definition 13 (Ordering and domain operations for I).

∅ vI x , True

[a, b] vI [c, d] ⇐⇒ c ≤ a ∧ b ≤ d

∅ tI x , x

[a, b] tI [c, d] , [min(a, c),max(b, d)]

∅ uI x , ∅

[a, b] uI [c, d] ,

[max(a, c),min(b, d)] if max(a, c) ≤ min(b, d)

∅ otherwise

The bottom element, ⊥I = ∅, expresses the absence of values, whereas the top

element, >I = [−∞,∞], expresses that the interval contains all values. To model

the numeric values of all three variables, x, y and z, the domain is lifted to interval

triples, I3. Let this revised abstract domain be denoted K. The lifted domain

then forms a complete lattice of infinite height 〈K,vK ,tK ,uK〉, where the domain

ordering and operations are pointwise liftings:

Definition 14 (Ordering and domain operations for K).

〈x, y, z〉 vK 〈x′, y′, z′〉 ⇐⇒ (x vI x′) ∧ (y vI y′) ∧ (z v z′)

〈x, y, z〉 tK 〈x′, y′, z′〉 , 〈x tI x′, y tI y′, z tI z′〉
〈x, y, z〉 uK 〈x′, y′, z′〉 , 〈x uI x′, y uI y′, z uI z′〉

Next, the correspondence between the concrete domain, L, and the revised

abstract domain, K, is specified. Since the abstract domain is a pointwise lifting,

it is natural to first define the mappings between a single value-set and a single

interval. The mapping αV : V → I abstracts a value set as the smallest interval

that includes the values. Conversely, the mapping γI : I → V computes the

numeric values that an interval encloses.

Definition 15 (Domain correspondence between I and V).

αV (∅) = ∅ γI(∅) = ∅
αV (l) = [min(l),max(l)] γI([l, u]) = {x ∈ Z | l ≤ x ≤ u}

The correspondence between L and K is then defined in terms of αV and γI . The

abstraction mapping αL : L→ K boxes the component sets of a concrete state into

CHAPTER 2. ABSTRACT INTERPRETATION 37

a 3-tuple of the smallest possible over-approximate intervals. The concretisation

mapping γK : K → L describes the sets of possible concrete states represented by

a 3-tuple of intervals.

Definition 16 (Domain correspondence between L and K).

αL(l) = 〈αI(x′), αI(y′), αI(z′)〉
where x′ = {x | 〈x, y, z〉 ∈ l} ∧

y′ = {y | 〈x, y, z〉 ∈ l} ∧
z′ = {z | 〈x, y, z〉 ∈ l}

γK(〈x, y, z〉) = {〈x′, y′, z′〉 | x′ ∈ γI(x) ∧ y′ ∈ γI(y) ∧ z′ ∈ γI(z)}
The correspondence can be shown to form a Galois connection (see Corollary 2 on

Page 171). To reiterate, this means that every value set has a canonical best ab-

straction. Note however, that different abstractions can share the same concretisa-

tion, e.g. γK(〈∅, [−∞,+∞], [−∞,+∞]〉) = γK(〈[−∞,+∞], ∅, [−∞,+∞]〉) = ∅.

2.3.2 Abstract Semantics

Following an analogous process to before, the abstract semantics is now defined,

although this time over 3-tuples of intervals. For each program point Pi, a semantic

equation S ′i ∈ K characterises an over-approximation of the concrete state Si ∈ L.

The equations are as follows:

• P1: Prior to execution, the variables are considered uninitialised and thus could

assume any value:

S ′1 = >K

• P2: x is initialised to 5 and control flow converges from P4:

S ′2 = 〈[5, 5], y, z〉 tK S ′4 where 〈x, y, z〉 = S ′1

• P3: Execution enters the body of the loop, so the loop condition (x > 0) must

be true. To reflect this, the values of x are restricted using the interval’s

meet operator:

S ′3 = 〈x uI [1,+∞], y, z〉 where 〈x, y, z〉 = S ′2

CHAPTER 2. ABSTRACT INTERPRETATION 38

• P4: x is decremented. The infix function, −
I

: I × I → I computes the result

of subtracting of one interval from another.

Definition 17 (Interval Subtraction). Given two intervals, i1 and i2:

i1 −I
i2 =

∅ if i1 = ∅ ∨ i2 = ∅
[l − u′, u− l′] if i1 = [l, u] ∧ i2 = [l′, u′]

The abstract equation for P4 is then:

S ′4 = 〈x−
I

[1, 1], y, z〉 where 〈x, y, z〉 = S ′3

• P5: Execution leaves the loop, therefore the loop condition is false, i.e. x ≤ 0.

Again, this is expressed using the interval meet:

S ′5 = 〈x uI [−∞, 0], y, z〉 where 〈x, y, z〉 = S ′2

The abstract semantics can be shown to be monotonic (see Theorem 6 on

Page 173).

Recall that before the abstract semantics are solved, a termination argument

should be constructed. In the previous interpretation (with signs), termination

was guaranteed by the ascending chain condition. Since the revised abstraction

does not satisfy the ascending chain condition (the abstract lattice is infinite in

height), a different argument must be used to guarantee termination. Actually,

example2.g was engineered so that the abstract semantics are free of infinite

chains; this fact alone suffices as a termination argument. In practice however, it

is usually not known whether the solving of an abstract semantics will encounter

infinite chains. In such cases, fixpoint acceleration techniques such as widening [32]

can used to guarantee termination. An example interpretation that uses widening

is detailed later in Section 2.4.

CHAPTER 2. ABSTRACT INTERPRETATION 39

Pi
Iteration

1 2 . . . 6 7
1 >K >K >K >K
2 〈[5, 5],>I ,>I〉 〈[4, 5],>I ,>I〉 . . . 〈[0, 5],>I ,>I〉 〈[0, 5],>I ,>I〉
3 〈[5, 5],>I ,>I〉 〈[4, 5],>I ,>I〉 . . . 〈[1, 5],>I ,>I〉 〈[1, 5],>I ,>I〉
4 〈[4, 4],>I ,>I〉 〈[3, 4],>I ,>I〉 . . . 〈[0, 4],>I ,>I〉 〈[0, 4],>I ,>I〉
5 〈⊥I ,>I ,>I〉 〈⊥I ,>I ,>I〉 . . . 〈[0, 0],>I ,>I〉 〈[0, 0],>I ,>I〉

Table 3: Fixpoint computation for example2.g.

2.3.3 Solving

The abstract semantics are now solved to compute over-approximate intervals of

the numeric values that can arise at each program point. The Kleene solving pro-

cess is shown in Table 3. Fixpoint convergence is achieved after seven iterations.

The analysis correctly infers that x can never turn negative after its initialisation;

i.e. no interval corresponding to x contains a value less than 0 after P2.

To summarise the message of this section, the abstract domain of signs, M ,

could only infer weak information about example2.g and as a consequence gave

false positives. The more expressive domain K, built upon intervals, inferred

more precise information and without a false positive. This demonstrates how the

choice of abstract domain can affect the precision of the analysis.

2.4 Ensuring Fast Termination with Widening

The first interpretation (in Section 2.2) used domains that formed a Galois con-

nection, a small finite abstract lattice and monotonic abstract semantics, mean-

ing that long or infinite chains were impossible. As a consequence, termination

was both fast and assured. The second interpretation (in Section 2.3) also used

domains which form a Galois connection and monotonic abstract semantics. Al-

though the abstract lattice was infinite, solving did not encounter long or infinite

chains of abstract states. But what about other cases, where for example, the ab-

stract domain is not finite and it is not known whether long or infinite ascending

chains exist? In such cases, fixpoint acceleration can be deployed to ensure that

both termination occurs and quickly. In this section, widening is demonstrated as

a fixpoint acceleration technique.

CHAPTER 2. ABSTRACT INTERPRETATION 40

1: z ← 2;
2: x ← 10;
3: y ← 0;
4: while y < 5 do
5: x ← x − z

6: y ← y +1
7: done
8:

1

2

3

4

5

6

7

8

Figure 6: A third G program, example3.g, and the corresponding CFG.

Widening was originally proposed [32] as a complete alternative to the Galois-

connection-based approach to abstract interpretation. However, widening can be

used to supplement an existing Galois-connection-based interpretation to ensure

fast termination. To illustrate the need for widening as a fixpoint acceleration

technique, consider the third G program listed in Figure 6. The program is a

simple loop, the body of which will be executed a total of five times. In each loop

iteration, two is subtracted from x (indirectly via the variable z). At the end of

program execution (P8), the value of x is zero. The abstract semantics formulated

over elements of K are as follows:

S ′1 = >K
S ′2 = 〈x, y, [2, 2]〉 where 〈x, y, z〉 = S ′1

S ′3 = 〈[10, 10], y, z〉 where 〈x, y, z〉 = S ′2

S ′4 = 〈x, [0, 0], z〉 tK S ′7 where 〈x, y, z〉 = S ′3

S ′5 = 〈x, y uI [−∞, 4], z〉 where 〈x, y, z〉 = S ′4

S ′6 = 〈x−
I
z, y, z〉 where 〈x, y, z〉 = S ′5

S ′7 = 〈x, y +
I

[1, 1], z〉 where 〈x, y, z〉 = S ′6

S ′8 = 〈x, y uI [5,+∞], z〉 where 〈x, y, z〉 = S ′4

CHAPTER 2. ABSTRACT INTERPRETATION 41

Pi
Iteration

1 2 . . .
1 >K >K . . .
2 〈>I ,>I , [2, 2]〉 〈>I ,>I , [2, 2]〉 . . .
3 〈[10, 10],>I , [2, 2]〉 〈[10, 10],>I , [2, 2]〉 . . .
4 〈[10, 10], [0, 0], [2, 2]〉 〈[8, 10], [0, 1], [2, 2]〉 . . .
5 〈[10, 10], [0, 0], [2, 2]〉 〈[8, 10], [0, 1], [2, 2]〉 . . .
6 〈[8, 8], [0, 0], [2, 2]〉 〈[6, 8], [0, 1], [2, 2]〉 . . .
7 〈[8, 8], [1, 1], [2, 2]〉 〈[6, 8], [1, 2], [2, 2]〉 . . .
8 〈[10, 10],⊥I , [2, 2]〉 〈[8, 10],⊥I , [2, 2]〉 . . .

Pi
Iteration

5 6 7
1 >K >K >K
2 〈>I ,>I , [2, 2]〉 〈>I ,>I , [2, 2]〉 〈>I ,>I , [2, 2]〉
3 〈[10, 10],>I , [2, 2]〉 〈[10, 10],>I , [2, 2]〉 〈[10, 10],>I , [2, 2]〉
4 〈[2, 10], [0, 4], [2, 2]〉 〈[0, 10], [0, 5], [2, 2]〉 〈[−2, 10], [0, 5], [2, 2]〉
5 〈[2, 10], [0, 4], [2, 2]〉 〈[0, 10], [0, 4], [2, 2]〉 〈[−2, 10], [0, 4], [2, 2]〉
6 〈[0, 8], [0, 4], [2, 2]〉 〈[−2, 8], [0, 4], [2, 2]〉 〈[−4, 8], [0, 4], [2, 2]〉
7 〈[0, 8], [1, 5], [2, 2]〉 〈[−2, 8], [1, 5], [2, 2]〉 〈[−4, 8], [1, 5], [2, 2]〉
8 〈[2, 10],⊥I , [2, 2]〉 〈[0, 10], [5, 5], [2, 2]〉 〈[−2, 10], [5, 5], [2, 2]〉

Table 4: Non-terminating solving.

When the abstract semantics are solved using Kleene iteration, termination never

occurs. The first few iterations of the solving process are shown in Table 4. By the

second iteration, S ′1, S
′
2 and S ′3 have fixed. By iteration 6, all state relating to the

variables y and z has reached a fixpoint, but the lower bounds of x from P4 onward

are still descending. It may be surprising that the analysis is unable to determine

that x does not fall below zero in the loop body, as in concrete executions the

final loop iteration starts with x=2. Since the interval domain is non-relational,

the abstraction is unable to capture the fact that once y = 5, the value of x is

fixed inside the loop. Instead, the lower bound of x continues to descend within

the loop body. In fact, since the abstract lattice of the interval domain is in this

case infinite, fixpoint convergence will never be achieved. In other words, this

interpretation contains chains of abstract states which are infinite in length. This

example serves as justification for why widening is required.

CHAPTER 2. ABSTRACT INTERPRETATION 42

2.4.1 Widening for Intervals

The aim of widening is to accelerate the solving process by skipping over inter-

mediate abstract states in a long ascending chain. This task is performed by the

widening operator, O.

Definition 18 (Upward iteration sequence with widening [32]). Consider a par-

tially ordered abstract domain 〈A,vA〉 and a monotonic abstract transfer func-

tion FA : A → A. Then an increasing chain of elements drawn from A is

c = 〈c1, c2, . . .〉, defined by a starting state c1 and ci+1 = FA(ci). The chain

may be long or even infinite.

A second chain c′ = 〈c′1, . . . , c′n〉 is defined as:

c′1 = c1 c′i+1 =

c′i if FA(c′i) vA c′i
c′i OA FC(c′i) otherwise

where OA : A× A→ A is a widening operator such that:

∀s ∈ A. ∀t ∈ A. s vA (s OA t) ∧ ∀s ∈ A. ∀t ∈ A. t vA (s OA t)

The latter chain c′ is finite, eventually meeting a least-fixpoint c′n. Further c′n is

guaranteed to be a sound over-approximation of all of the elements of the possibly

large or infinite chain c, i.e. ∀ci ∈ c. ci vA c′n.

The classic widening operator for intervals, as suggested by Cousot and Cousot is

as follows:

Definition 19 (Widening operator for intervals [32]).

OI : I → I

⊥IOI [c, d] = [c, d]

[a, b]OI [c, d] = [if c < a then −∞ else a,

if d > b then +∞ else b]

Given two consecutive abstract iterates in a chain, the interval widening operator

returns a new widened interval. Namely, the lower bound is adjusted to −∞ if the

lower bound is descending and the upper bound is adjusted to +∞ if the upper

bound is ascending.

CHAPTER 2. ABSTRACT INTERPRETATION 43

Example 1 (Widening a chain of intervals). Let i = 〈i1, i2, . . .〉 be a chain of

intervals such that i1 = [0, 0] and ij+1 = ij tI (ij +
I
[1, 1]). The chain is indeed in-

finite, but may be over-approximated with widening. Let the chain i′ = 〈i′1, i′2, . . .〉
be the chain obtained by widening. The first iterate i′1 = i1 = [0, 0], then the

next iterate i′2 = [0, 0] OI [0, 1] = [0,+∞]. A further iteration computes i′3 = i′2,

therefore a fixpoint is reached. Further i′2 over-approximates all iterates of i.

This simple example shows that it is possible to over-approximate the elements

of a long or infinite chain through widening alone. However, when widening is com-

bined with a standard Galois-connection-style interpretation to accelerate solving,

usually widening is not used immediately. Instead, only after the chain length ex-

ceeds a given length is widening applied. In the previous example, widening could

be used after four iterations if a fixpoint had not yet been reached. In this case

the abstract iterates would be: 〈[0, 0], [0, 1], [0, 2], [0, 3], [0,+∞], [0,+∞]〉. This

approach allows short chains to converge before widening comes into effect, in

some cases yielding more precise results.

2.4.2 A Widening for G Programs

Having discussed the widening for a chain of intervals, now a widening can be

devised for abstractions of G programs. Recall that because G programs use three

distinct variables, the abstract domain is a lifting of the interval domain, i.e. I3.

To define a widening for this domain, a widening operator OK : K → K is defined,

which is a lifting of OI :

Definition 20 (A widening operator for K).

〈x, y, z〉 OK 〈x′, y′, z′〉 , 〈x OI x
′, y OI y

′, z OI z
′〉

The correctness of the operator should be apparent (for proof, see Theorem 7 on

Page 175).

The solving process is revised to incorporate the widening operator. Widening

shall be used if after a predetermined number of solving iterations, an abstract

state has not yet converged. One possible widening strategy is shown in Algo-

rithm 1. Each abstract state has an associated counter, which determines if and

when widening should come into effect. All abstract states begin at the bottom of

CHAPTER 2. ABSTRACT INTERPRETATION 44

the abstract lattice (⊥K), then Kleene iteration begins as normal. The function

Apply: K |S
′|×Z→ K performs the application of an abstract semantic equation

and returns an updated abstract state. After each iteration of solving, if an ab-

stract state changes (moves up the abstract lattice), then the associated counter

is incremented. When the counter associated with an abstract state reaches a

predetermined upper limit, wk, subsequent solving steps for this abstract state

are performed via widening.

The revised solving strategy can now be applied to the abstraction of the third

example program example3.g (Figure 6), which, as discussed earlier, suffers from

non-termination. The solving steps when wk = 6 are shown in Table 5. To begin

with, the abstract states are the same as for Kleene iteration. Like before, by the

second iteration, S ′1, S
′
2 and S ′3 have fixed and the remaining states continue to

change. By iteration 6, all information alluding to y has fixed, but the intervals

for x still have descending lower bounds in S ′4, . . . , S
′
8. However, after iteration 6,

the widening counters for S ′4, . . . , S
′
8 reach wk, so in the next iteration widening is

used to compute subsequent states for S ′4, . . . , S
′
8. Specifically, the unstable lower

bounds of the x intervals are extrapolated to −∞. The outcome of iteration 8

(not shown) is the same as that of iteration 7, thus the analysis reaches a fixpoint

and solving terminates. Notice that the final widened abstract states, S ′4, . . . , S
′
8,

soundly over-approximate the infinite chains computed by Kleene iteration.

Precision vs. Speed: Choosing a Suitable wk

In the above example, the application of widening led to the discovery of the least-

fixpoint of the abstract semantics, i.e. the information inferred is the best possible

abstraction (even in the presence of infinite chains). However, it is important to

note that often widening can lead to weaker results. An often overlooked aspect

of widening is the process of choosing a suitable number of iterations, wk, after

which widening comes into action. If wk is too small, then chains are prematurely

widened, often yielding a post-fixpoint. But on the other hand, if wk is too large,

then many unnecessary solving steps could ensue. To illustrate these problems,

in the previous example suppose a value of wk is selected which is less than 5,

then the intervals corresponding to the variable y for S ′4 to S ′8 would have been

widened to [0,+∞] in iteration wk + 1. In this case the result of widening is a

post-fixpoint; whilst the post-fixpoint is sound, the information inferred about y

CHAPTER 2. ABSTRACT INTERPRETATION 45

Algorithm 1 One possible widening algorithm for G programs.

function HybridSolve(S′, wk)
S′ ← 〈⊥K , . . . ,⊥K〉 . All abstract states start at bottom.
counts← 〈0, . . . , 0〉 . One counter per abstract state.
unstable ← True
while (unstable) do . Loop continues until a fixpoint is achieved.

unstable ← False

for (i← 1; i ≤ |S′|; i← i+ 1) do . Loop over abstract states.
old ← S ′i
S ′i ← Apply(S′, i) . Apply the ith abstract equation.
if (counts i < wk) then . Normal solving if true.

if (S ′i 6vK old) then . Increment counter if state changed.
counts i = counts i + 1

end if
else . Accelerate solving for this abstract state.

S ′i ←WidenIter(old, S ′i)
end if
if (S ′i 6vK old) then . A state changed, further iterations required.

unstable ← True
end if

end for

end while
return S′

end function

function WidenIter(old, next)
if (next vK old) then

return old
else

return old OK next
end if

end function

CHAPTER 2. ABSTRACT INTERPRETATION 46

Pi
(S′i, count)

Iter. 1 Iter. 2 . . .
1 (>K , 1) (>K , 1) . . .
2 (〈>I ,>I , [2, 2]〉, 1) (〈>I ,>I , [2, 2]〉, 1) . . .
3 (〈[10, 10],>I , [2, 2]〉, 1) (〈[10, 10],>I , [2, 2]〉, 1) . . .
4 (〈[10, 10], [0, 0], [2, 2]〉, 1) (〈[8, 10], [0, 1], [2, 2]〉, 2) . . .
5 (〈[10, 10], [0, 0], [2, 2]〉, 1) (〈[8, 10], [0, 1], [2, 2]〉, 2) . . .
6 (〈[8, 8], [0, 0], [2, 2]〉, 1) (〈[6, 8], [0, 1], [2, 2]〉, 2) . . .
7 (〈[8, 8], [1, 1], [2, 2]〉, 1) (〈[6, 8], [1, 2], [2, 2]〉, 2) . . .
8 (〈[10, 10],⊥I , [2, 2]〉, 1) (〈[8, 10],⊥I , [2, 2]〉, 2) . . .

Pi
(S′i, count)

Iter. 5 Iter. 6 Iter. 7
1 (>K , 0) (>K , 1) (>K , 0)
2 (〈>I ,>I , [2, 2]〉, 1) (〈>I ,>I , [2, 2]〉, 1) (〈>I ,>I , [2, 2]〉, 1)
3 (〈[10, 10],>I , [2, 2]〉, 1) (〈[10, 10],>I , [2, 2]〉, 1) (〈[10, 10],>I , [2, 2]〉, 1)
4 (〈[2, 10], [0, 4], [2, 2]〉, 5) (〈[0, 10], [0, 5], [2, 2]〉, 6) (〈[−∞, 10], [0, 5], [2, 2]〉, 6)
5 (〈[2, 10], [0, 4], [2, 2]〉, 5) (〈[0, 10], [0, 4], [2, 2]〉, 6) (〈[−∞, 10], [0, 4], [2, 2]〉, 6)
6 (〈[0, 8], [0, 4], [2, 2]〉, 5) (〈[−2, 8], [0, 4], [2, 2]〉, 6) (〈[−∞, 8], [0, 4], [2, 2]〉, 6)
7 (〈[0, 8], [1, 5], [2, 2]〉, 5) (〈[−2, 8], [1, 5], [2, 2]〉, 6) (〈[−∞, 8], [1, 5], [2, 2]〉, 6)
8 (〈[2, 10],⊥I , [2, 2]〉, 5) (〈[0, 10], [5, 5], [2, 2]〉, 6) (〈[−∞, 10], [5, 5], [2, 2]〉, 6)

Table 5: Previously non-convergent analysis reaching a fixpoint via widening
(wk = 6). The 8th iteration is omitted since it is the same at the 7th iteration.

is weak. Now suppose a wk is chosen which is greater than 6. Then since the

solving of S ′4 to S ′8 encounters infinite chains, and because the outcome of solving

with any wk ≥ 6 is the same, solving would perform unnecessary iterations, thus

slowing the solving process. The desired wk value varies on a per-program basis,

depending upon the length of the chains therein. Since it is not easy to know how

long ascending chains could be, a suitable wk is sometimes determined manually.

2.5 Chapter Summary

In this chapter, abstract interpretation was formally introduced. A series of in-

terpretations were designed to infer the signedness of variables at each point in a

G program. The first example abstracted numeric values as a set of signs. It was

then shown that the sign abstraction domain could generate false positives due to

the coarse nature of the domain. To rectify this, the abstract domain was revised

to incorporate intervals. It was shown that by this new abstraction, unnecessary

false positives can be avoided. Because Kleene iteration could encounter long

or infinite ascending chains, a simple fixpoint acceleration technique that used

CHAPTER 2. ABSTRACT INTERPRETATION 47

widening was presented. Using this widening on top of the existing abstraction,

the analysis yields results even in the presence of infinite ascending chains. It was

then pointed out that, whilst widening is often necessary, the quality of the results

greatly varies depending upon the choice of wk, which varies on a per-program

basis and may not be known up-front.

Chapter 3

Ranges and Sets for Boolean

Formulae

Although the fundamental ideas in abstract interpretation were laid down over

thirty years ago [31], abstract interpretation has only entered its industrialisation

phase comparatively recently [33]. This new phase is not only characterised by an

increased focus on tooling and systems building, but also by work on designing

and implementing new abstract domains. For example, domains for improved

scalability i.e. the class of weakly-relational domains [86, 111], and domains that

better match the structure of real programs i.e. symbolic decision trees that

correlate the relationship between status flags and numeric variables [14]. This

chapter offers a new means by which to automatically infer ranges and sets of

values directly from a Boolean formula. The method naturally takes into account

bitwise details and since the method is not underpinned by a decision tree, it

sidesteps the need for a canonical form and variable ordering.

3.1 Motivation

Blanchet et al. [14] illustrate the need for mixed symbolic and numeric abstractions

with the following pseudo-code:

B := (X = 0);

if (!B) Y := 1/X;

Listing 3.1: The relationship between B and X must be tracked.

48

CHAPTER 3. RANGES AND SETS FOR BOOLEAN FORMULAE 49

This code is correct in the sense that it does not give a division by zero error if

X = 0, but to deduce this it is necessary to track the relationship between B and

X. The authors state:

“In order to deal precisely with those examples, we implemented a

simple relational domain consisting in a decision tree with leaf an

arithmetic abstract domain. The decision trees are reduced by order-

ing Boolean variables and by performing some opportunistic sharing

of sub-trees. The only problem with this approach is that the size of

a decision tree can be exponential in the number of Boolean variables,

and the code contains thousands of global ones”

The problem of relating Booleans to numeric values is particularly acute in

binary reverse engineering and verification, though in these cases the Booleans

are CPU status flags. Since the runtime values of the status flags determine

which branches are taken, the flags must be taken into account when attempting to

recover the control flow graph (CFG) of a binary. This is a task which has recently

been explored in the literature [71]. The problem here is the so-called “chicken

and egg” problem [38]. To derive the CFG it is necessary to collect register values

to decide possible indirect jump targets. However, in order to collect register

values, the CFG is required. Kinder resolves this cyclic dependency by applying a

data-flow analysis in conjunction with a CFG that itself grows monotonically [71].

He illustrates these ideas with an idealised assembler language. In practice the

problem is considerably harder to solve, partly because of the problem of relating

status flags to ranges. To illustrate, consider the following x86 assembler code for

a switch table:

mov eax , [ebp -0x8] ; eax := *(ebp - 8)

sub eax , 0x2 ; eax := eax - 2

cmp eax , 0x5 ; cf := (0 =< eax < 5)

; zf := (eax = 5)

ja 0xd8 ; jump to 0xd8 if cf = 0 and zf = 0

jmp [0 x8048a0c + eax*4]

Listing 3.2: Use of an indirect jump in a jump table.

To determine the CFG it is necessary to ascertain that eax ∈ [0, 5] when the

indirect jump is reached. This range information, and the table itself, permits

CHAPTER 3. RANGES AND SETS FOR BOOLEAN FORMULAE 50

the CFG to be over-approximated. However, inferring the range on eax itself

requires careful reasoning about the value of the carry (cf) and zero (zf) flags —

a problem which is analogous to that addressed by Blanchet et al. [14].

In this chapter it is shown that an over-approximate range or set of the satis-

fying models of a Boolean formula can be automatically derived. This represents

a significant step towards the automated abstraction of binary code, where bit-

wise details, such as status flags, must be carefully considered. The approach is

attractive in that a range analysis could be formulated directly from a concrete

description of a binary program without the worry of a canonical representation

(as with a decision tree) and without the need to define or synthesise abstract

transfer functions. The following contributions are presented in this chapter:

• It is shown that an over-approximate range of Boolean satisfiability (SAT)

models can be efficiently extracted from a Boolean formula by repeated calls

to a SAT solver.

• It is shown that the range can be incrementally refined into successively

more precise over-approximate sets of SAT models. The technique relies on

computing over- and under-approximate sub-ranges of models. Eventually,

the set converges onto the precise set of SAT models, however, the algorithm

may be terminated early and still give a sound over-approximation.

• It is shown that the techniques dovetail with incremental SAT and experi-

mental results are presented which suggest that the techniques are viable.

3.2 Range Abstraction

Suppose that the goal is to compute a range of values for a bit vector x which is

constrained by a Boolean formula f , where the variables over which f is defined are

exactly the variables of x1. To compute the range, the maximum and minimum

values of x need to be determined. In principle, this can be achieved by applying

a SAT solver in conjunction with blocking clauses.

1In the next chapter an extension is proposed which lifts this restriction. This allows one to
compute ranges for a subset of the variables over which f is defined.

CHAPTER 3. RANGES AND SETS FOR BOOLEAN FORMULAE 51

Definition 21 (Blocking Clause). Given a model x = 〈x0, . . . , xn−1〉 of a for-

mula f under which the propositional variables of x are bound to the truth values

b0, . . . , bn−1 ∈ {0, 1}, a blocking clause is defined as:

n−1∨
i=0

yi where yi =

xi if bi = 0

¬xi otherwise

Thus, by adding a blocking clause to a SAT instance, any subsequent solution

differs from the truth values b0, . . . , bn−1 on at least one bi. By repeating this

technique until the SAT instance is unsatisfiable, it is possible to enumerate all

solutions, hence all values that x can assume. From the set of satisfying models,

the maximum and minimum can then be extracted. The limitation of this tech-

nique is that the number of invocations of the solver is linear in the number of

solutions (which may be large) and moreover, the size of the SAT instance grows

as blocking clauses are added. Instead, a method is proposed which finds the

minimum and maximum models directly.

3.2.1 Computing the Minimum

Algorithm 2 presents an algorithm for computing a minimum model that requires

only n calls to a SAT solver. If the Boolean flag s = 1 then the bit vector

x = 〈x0, . . . , xn−1〉 is interpreted as a signed integer, represented using two’s

complement, where xn−1 is the sign bit and x0 is the least significant bit. If

s = 0 then the bit vector x is interpreted as an unsigned integer. The function

Minimum returns the minimum value expressed as binary vector k ∈ {0, 1}n.

Consider first the unsigned case that is handled in the else branch of the loop

body. The bits of k are computed in reverse order: the high bit first and the low

bit last. On each iteration of the loop, f is tested to see whether it possesses a

solution in which the bit x[n− |k| − 1] is assigned to 0. If so, then the minimum

value of x has a 0 in this bit position, hence 0 is prepended to k. If not, then

every solution of x (including the minimum) has a 1 in this position, hence 1 is

prepended to k. Note that as the loop progresses, f is itself modified so as to

clamp the high bits of x to the high bits of the partially computed minimum k.

The signed case proceeds analogously except for the very first iteration which

computes the sign bit of the minimum. If f has a solution with x[n− 1] assigned

CHAPTER 3. RANGES AND SETS FOR BOOLEAN FORMULAE 52

to 1, then the minimum is negative, which is reflected by setting k to the unary

vector 〈1〉, so as to record the sign of the minimum. Otherwise, the minimum is

non-negative, hence k is set to 〈0〉. Setting s to 0 ensures that all subsequent loop

iterations deduce the lower bits of k in the same manner as in the unsigned case.

Algorithm 2 Computing the minimum value of the bit-vector x

1: function Minimum(f,x, s)
2: k← 〈〉
3: n← |x|
4: while |k| < n do
5: if s then
6: if Sat(f ∧ x[n− 1]) then
7: f ← f ∧ x[n− 1]
8: k← 〈1〉
9: else

10: f ← f ∧ ¬x[n− 1]
11: k← 〈0〉
12: end if
13: s← 0
14: else
15: if Sat(f ∧ ¬x[n− |k| − 1]) then
16: f ← f ∧ ¬x[n− |k| − 1]
17: k← 〈0〉 :: k
18: else
19: f ← f ∧ x[n− |k| − 1]
20: k← 〈1〉 :: k
21: end if
22: end if
23: end while
24: return k
25: end function

3.2.2 Computing the Maximum

Computing a maximum model is analogous to computing a minimum model. To

compute the maximum, take Algorithm 2 and make the following amendments:

• Invert the polarities of x[n− 1] on lines 6, 7 and 10.

• Invert the polarities of x[n− |k| − 1] on lines 15, 16 and 19.

CHAPTER 3. RANGES AND SETS FOR BOOLEAN FORMULAE 53

• Invert the truth values prepended onto k on lines 8, 11, 17 and 20.

• Rename the function to Maximum.

3.3 Set Abstraction

Switch tables can in general be hierarchical structures in which a series of tests

direct the control into smaller tables that handle indices that are close to one

another. Range abstraction alone cannot accurately model such sets of indices

and addresses and therefore it is necessary to instead employ set abstraction.

Since an n-ary bit-vector x can assume up to 2n distinct values, the set itself

can be large, at least in the pathological case. Therefore, for cautionary reasons,

abstraction is deployed to compute an over-approximation (superset) that keeps

the size of the set manageable. As a by-product of this construction, it is also able

to compute under-approximations (subsets) of the set of values that bit-vector can

assume when constrained by a given Boolean function f .

Algorithm 3 presents the function Set for computing a set abstraction for x.

The Boolean argument s indicates whether x has a signed interpretation. The

integer argument c bounds the number of iterations of the loop. Moreover, if c is

non-negative and odd then an over-approximation is found, whereas if c is non-

negative and even then an under-approximation is derived. If c is negative then

the algorithm will run to completion and exactly characterise the values of x.

The set S, which starts empty, is refined on each iteration of the loop. The

vectors l and u are used to further constrain f ; these bounds increase and decrease

respectively, until either: a) the c threshold triggers premature termination, or b)

the bounds l and u cross and an exact description of the set is found. The special

treatment of the most significant bit of l and u on lines 7 and 8 stem from the

two’s complement representation for the case where s = 1. The function Value

is used to interpret a bit vector as a numeric value:

Definition 22 (Integer Interpretation of a bit-vector b).

Value(b, s) = (1− 2s)2n−1b[n− 1] +
n−2∑
i=0

2ib[i]

CHAPTER 3. RANGES AND SETS FOR BOOLEAN FORMULAE 54

Algorithm 3 Computing a set abstraction for the bit-vector x

1: function Set(f,x, s)
2: return set(f,x, s,−1)
3: end function
4: function Set(f,x, s, c)
5: S ← ∅
6: p← 1
7: l← 〈0, . . . , 0, s〉
8: u← 〈1, . . . , 1,¬s〉
9: while Value(l, s) <Value(u, s) ∧ c 6= 0 do

10: l←Minimum(f ∧ (l ≤s x),x, s)
11: u←Maximum(f ∧ (x ≤s u),x, s)
12: if p then
13: S ← S ∪ [Value(l, s),Value(u, s)]
14: else
15: S ← S \ [Value(l, s),Value(u, s)]
16: end if
17: p← ¬p
18: f ← ¬f
19: c← c− 1
20: end while
21: return S
22: end function

Each iteration of the loop determines a new minimum (l) and maximum (u)

solution to a SAT instance that is obtained by augmenting either f or ¬f with

a formula that imposes a less-than-or-equals relation on x. This additional for-

mula prevents the previously found ranges from being rediscovered. Although

incremental SAT can be used within the functions Minimum and Maximum, the

different less-than-or-equal-to relations impede incremental SAT being applied in

the function Set.

The less-than-or-equal-to relations are defined as follows:

CHAPTER 3. RANGES AND SETS FOR BOOLEAN FORMULAE 55

Definition 23 (Less-than-or-equal-to relations for bit-vectors). For the case of

unsigned vectors:

〈〉 ≤0〈〉 = true

〈x[0] . . .x[n− 1]〉 ≤0〈y[0] . . .y[n− 1]〉 =

(¬x[n− 1] ∧ y[n− 1]) ∨ ((x[n− 1]⇔ y[n− 1])∧
(〈x[0] . . .x[n− 2]〉 ≤0 〈y[0] . . .y[n− 2]〉))

For the case of signed vectors:

〈〉 ≤1〈〉 = true

〈x[0] . . .x[n− 1]〉 ≤1〈y[0] . . .y[n− 1]〉 =

(x[n− 1] ∧ ¬y[n− 1]) ∨ ((x[n− 1]⇔ y[n− 1])∧
(〈x[0] . . .x[n− 2]〉 ≤0 〈y[0] . . .y[n− 2]〉))

On line 10 of the set abstraction algorithm, l is a vector of truth values, hence

the formula (l ≤s x) can be partially evaluated to simplify the comparison (and

likewise on line 11 for (x ≤s u)). For example consider two 4-bit vectors x and

y and suppose y = 〈1, 0, 1, 1〉. Then x ≤0 y can be reduced to the formula

¬x[3] ∨ (x[3] ∧ ¬x[2] ∨ (x[2] ∧ ¬x[1])).

Example 2 (Set Abstraction). Suppose a 4-bit vector x is constrained by a for-

mula so that it can only draw an unsigned value from the set:

{1, 2, 3, 5, 6, 8, 9, 12, 13, 15}

Table 6 shows how set abstraction converges onto this set by finding alternating

over- and under-approximations. Each entry in the table corresponds one iteration

of the algorithm immediately after S is refined. i.e. prior to the execution of line

17 in Algorithm 3.

Figure 7 shows convergence diagrammatically. The numeric values which may

appear in S can be visualised as a bar separated into 16 cells. Each cell corresponds

to one numeric value. An open cell represents a numeric value which is a member

of the set S, whereas a shaded cell represents a numeric value which is absent in

the set S. The range inferred at each iteration is indicated by an arrowed line

CHAPTER 3. RANGES AND SETS FOR BOOLEAN FORMULAE 56

underneath each bar.

c p l u
Value Value

S
(l, 0) (u, 0)

-1 1 〈1, 0, 0, 0〉 〈1, 1, 1, 1〉 1 15 {1 . . . 15}
-2 0 〈0, 0, 1, 0〉 〈0, 1, 1, 1〉 4 14 {1, 2, 3, 15}
-3 1 〈1, 0, 1, 0〉 〈1, 0, 1, 1〉 5 13 {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15}
-4 0 〈1, 1, 1, 0〉 〈1, 1, 0, 1〉 7 11 {1, 2, 3, 5, 6, 12, 13, 15}
-5 1 〈0, 0, 0, 1〉 〈1, 0, 0, 1〉 8 9 {1, 2, 3, 5, 6, 8, 9, 12, 13, 15}
-6 0 〈0, 1, 0, 1〉 〈1, 0, 0, 1〉 10 7 {1, 2, 3, 5, 6, 8, 9, 12, 13, 15} X

Table 6: Example showing how S converges.

Figure 7: Convergence of set abstraction shown diagramatically.

3.4 Experimental Results

The Minimum and Maximum functions at the heart of the range and set abstrac-

tion algorithms amount to solving a series of related SAT problems. This suggests

the application of incremental SAT. Incremental SAT is the problem of solving

a series SAT instances {∧F1, . . . ,∧Fk} defined over a common set of variables.

Each Fi is a set of clauses, and the consecutive instances are related according to

CHAPTER 3. RANGES AND SETS FOR BOOLEAN FORMULAE 57

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

T
im

e/
se

c

Number of jump addresses

Figure 8: Satisfiable jump addresses vs. time.

Fi+1 = (Fi \ Gi) ∪ Hi where Gi and Hi are sets of clauses that are respectively

rescinded and added [65, 117]. Incremental SAT is most useful when |Gi| � |Fi|
and |Hi| � |Fi| since then solving ∧Fi+1 can take advantage of the clauses learnt

when solving ∧Fi, and possibly earlier instances.

In Algorithm 2, unit clauses of x[n − 1], ¬x[n − 1], ¬x[n − |k| − 1] and

x[n − |k| − 1] are added to f at lines 6, 10, 15 and 19 respectively. Conversely,

the unit clauses x[n− 1] and ¬x[n− |k| − 1] are rescinded when the satisfiability

questions posed at lines 6 and 15 are found to have a negative answer. (Note

that these removal operations are not reflected in the algorithm but are applied

in the else blocks that commence at lines 10 and 19.) Thus whenever a new SAT

instance is encountered, |Gi| ≤ 1 and |Hi| = 1, which suggests that the algorithm

is ideal for incremental SAT. Moreover, only unit clauses are added and removed,

and this specialised form of incremental SAT is supported with the so-called unit

assumptions of the popular MiniSat solver [44]2.

2Actually, unit assumptions are automatically withdrawn by MiniSat after checking satis-
fiability and thus those unit assumptions which need to be preserved have to be re-added as
immutable clauses.

CHAPTER 3. RANGES AND SETS FOR BOOLEAN FORMULAE 58

Of course, incremental SAT is only of value if it actually improves perfor-

mance. To investigate this, a series of Boolean formulae were generated whose

models are representative of the feasible jump targets of multi-level switch tables.

Each formula constrains a 64-bit vector x to model up to 98 different branch ad-

dresses. To investigate scalability, the set abstraction algorithm was applied to

switch tables of increasing size where the branch addresses were non-consecutive

(this is because typically branch addresses are 32 or 64 bits in length, meaning

that indirect jump targets occur spaced 4 or 8 bytes apart). The set abstraction

algorithm was not terminated prematurely, so as to exercise it fully. The graph

shown in Figure 8 suggests that the time to compute the precise set abstraction

grows smoothly with the size of the switch table. These timings were generated

on a 3GHz x86 machine with 4GB of RAM running Linux.

Interestingly, replacing incremental SAT with a series of independent calls to

the solver gave a slowdown of two orders of magnitude. Thus incremental SAT

both improves performance and avoids the need to invoke the solver 64 times

to compute the minimum/maximum of a 64-bit integer. Figure 9 illustrates the

variability in the time required to compute the minima and maxima at different

iterations of the set abstraction algorithm. Importantly, the time to compute the

minima and maxima do not increase in the latter iterations of algorithm, which

one might expect as the solution range diminishes.

It should be emphasised that the efficiency of technique can doubtless be im-

proved by standard tactics such as more refined CNF conversion [92]. Further-

more, by changing the search strategy used in the SAT solver, it may be possible to

directly derive the maximum (or minimum) model without deploying n separate

(albeit incremental) calls to the solver. Although this would require fundamental

changes to the SAT solver itself, the speed-up could be very considerable.

3.5 Chapter Summary

The work presented in this chapter has shown that, given a Boolean formula,

ranges and sets of satisfying models can be inferred in an efficient manner. This

represents a significant step towards the automated abstraction of binary code,

where bit-level details must be considered to obtain suitably precise information.

For example, the method could be used to compute a range (or set) of jump targets

CHAPTER 3. RANGES AND SETS FOR BOOLEAN FORMULAE 59

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0 20 40 60 80 100

T
im

e/
se

c

Range Number

minima
maxima

Figure 9: Time taken to solve minima and maxima of each range.

for a switch table, where the status register flags must be taken into account.

Potential jump targets are invaluable for the task of CFG recovery, which itself

is important for underpinning other analyses. That such information could be

derived automatically is encouraging, particularly as it cannot be ensured that

range checks and multi-way branches take a regular recognisable structure.

The range and set abstraction methods presented here, however, only pro-

vide part of the necessary infrastructure for an automated range analysis. In this

setting, the semantics of blocks would be expressed as a Boolean formula corre-

sponding to a mapping blocki : Bn× . . .×Bn → Bn× . . .×Bn. The inputs to the

function represent n-bit register values prior to execution of the block, and the

outputs of the function represent the mutated n-bit register values after execution

of the block. To infer a range or set of values for one of the output registers, it

is not the SAT models themselves that should be abstracted, but rather the val-

ues of a sub-vector. As shall be discussed in the next chapter, to achieve this, a

quantified Boolean formula is required.

Chapter 4

Quantifier Elimination with

Optimisation

In the previous chapter an algorithm was presented which abstracts the solutions

of a Boolean formula as a range. The range can optionally be refined to an over-

approximate set. This chapter discusses the application of these algorithms to

Boolean encodings of CPU operations so as to recover control flow information

from a binary program. As shall become apparent, to achieve this it is necessary

to deploy quantifier elimination.

4.1 Motivation

Consider the following sequence of x86 instructions:

shl eax , 2

jmp [eax]

Listing 4.1: Example usage of an indirect jump.

The first instruction shifts the 32-bit eax register left twice, therefore multiplying

by four. The second instruction transfers control (indirectly) to the address held in

eax. Traditionally, the analysis of such code has been troublesome, since indirect

jumps make determining the control flow graph (a common preliminary for many

analyses) difficult. This stems from the fact that in order to know the targets of an

indirect jump, the values that the operand register may assume must be known.

60

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 61

In the case of the above example, it is necessary to know the values that eax may

assume prior to the indirect jump. However, to infer register values, typically the

control flow graph itself is required. This predicament is widely acknowledged as

the “chicken and egg problem” and was discussed in Chapter 1 of this thesis.

The work discussed in this chapter aims to overcome the chicken and egg prob-

lem through the application of the range and set abstraction algorithms shown in

the previous chapter. Since CPU operations can easily be expressed as proposi-

tional formulae [16], it should be possible to incrementally resolve indirect jump

targets through the application of range and set abstraction. Indeed it is possible,

however these algorithms cannot be applied directly; to get the desired result the

Boolean formulae must include universal quantifiers, and because range and set

abstraction utilise a SAT solver, these quantifiers must be eliminated. This led to

the main outcome of this chapter – a new quantifier elimination technique. To ap-

preciate the necessity for quantifier elimination, let us first discuss what happens

if range and set abstraction are applied naively.

4.1.1 Applying Range and Set Abstraction Naively

To demonstrate why the naive application of range and set abstraction is insuffi-

cient, let us apply these algorithms to the program snippet shown in Listing 4.1.

Under this scenario the targets of the indirect jump can be known by inferring

the values that eax may assume after the left shift operation. As a starting point,

the program is encoded as a Boolean formula.

The shift operation can be thought of as a mapping shleax,2 : B32 → B32, i.e. a

mapping from a bit-vector representing eax prior to shifting (eax) to a bit-vector

representing the mutated eax register after shifting (eax′). This relationship can

be captured with a Boolean formula ξ as follows:

ξ = ¬eax′0 ∧ ¬eax′1 ∧ (eax′2 ⇔ eax0) ∧ . . . ∧ (eax′31 ⇔ eax29)

Following the approach of [16], the semantics of entire blocks or functions can be

encoded in this way. For simplicity, the example considers a single operation. Also

for simplicity, ξ does not model the registers that are unaffected by the operation

(ebx, ecx, . . .) and eax is assumed to be unsigned.

Now suppose that the set abstraction algorithm described in the previous

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 62

chapter (Algorithm 3 on Page 54) is used to compute a set of possible jump

targets characterised by eax′. Let ri = [Value(li, 0),Value(ui, 0)] be the range

computed upon iteration i of the set abstraction algorithm. One would be forgiven

for proceeding in the following manner:

• Convert ξ to conjunctive normal form (CNF) via the Tseitin transform [115]

to derive ξ′ where ξ ≡ ∃T. ξ′ and each ti ∈ T is an existentially quantified

Tseitin (witness) variable. Crucially, ξ′ is equisatisfiable to ξ. Similarly,

a CNF formula ξ′′ can be constructed which is equisatisfiable to ¬ξ (this

can be accomplished by taking ξ′ and negating the topmost Tseitin witness

variable so that ¬ξ ≡ ∃T. ξ′′).

• Perform the first iteration of set abstraction, thus finding a range r1, where:

l1 = Minimum(ξ′ ∧ 〈0, . . . , 0〉 ≤0 eax
′, eax ′, 0)

u1 = Maximum(ξ′ ∧ eax′ ≤0 〈1, . . . , 1〉, eax ′, 0)

This is an odd iteration of set abstraction, so ξ′ is used. An over-approximate

range of values is computed which corresponds to values of eax′ that can

be obtained by shifting eax left twice. Since the input vector eax is uncon-

strained, the computed interval is r1 = [0, 232 − 4].

• Next, perform the second iteration to refine the abstraction with a range r2:

l2 = Minimum(ξ′′ ∧ l1 ≤0 eax
′, eax′, 0)

u2 = Maximum(ξ′′ ∧ eax′ ≤0 u1, eax
′, 0)

where l1 and u1 correspond to the lower and upper bounds found in the

previous iteration (i.e. 0 and 232 − 4). Since this is an even iteration of set

abstraction, ξ′′ is used. An over-approximate range of values (as a subset of

[0, 232−4]) is computed. The range encloses the values of eax ′ that are non-

solutions to shifting eax left twice. The range computed is r2 = [0, 232 − 4].

Notice that r2 = r1.

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 63

• Perform the third iteration to further refine the abstraction with a range r3:

l3 = Minimum(ξ′ ∧ l2 ≤0 eax
′, eax, 0)

u3 = Maximum(ξ′ ∧ eax′ ≤0 u2, eax, 0)

The interval computed is r3 = [0, 232 − 4]. Notice that r3 = r2 = r1.

• Etcetera. Termination never occurs.

4.1.2 The Need for Quantifier Elimination

One may be surprised to see that set abstraction, when applied to the example in

the previous subsection, does not terminate. The set abstraction will continually

find the range [0, 232 − 4]. Admittedly, at first this was an unexpected outcome,

especially since no experiment in the previous chapter exhibited this behaviour.

The problem arises from the fact that some values of eax′ are solutions to

both ξ and ¬ξ, albeit under different assignments to the input vector eax. For

example, Value(eax, 0) = 0 ∧Value(eax′, 0) = 0 is a satisfying assignment to

ξ (and therefore also a satisfying assignment to ξ′). This is because by shifting

〈0, . . . , 0〉 left twice, the outcome would be 〈0, . . . , 0〉. Now consider the assign-

ment Value(eax, 0) = 1 ∧Value(eax′, 0) = 0. This is a satisfying assignment

of ¬ξ (and therefore also a satisfying assignment to ξ′′), meaning that by shifting

〈0, . . . , 0, 1〉 left twice, the outcome can not be 〈0, . . . , 0〉. So the partial assignment

Value(eax′, 0) = 0 can either satisfy or falsify ξ depending upon the assignments

to the variables of eax. In turn, the bounds found for eax′ in consecutive it-

erations of set abstraction may be the same and this compromises termination.

In other words, set abstraction cannot be applied directly to compute ranges and

sets for sub-vectors of the variables over which a formula is defined. By contrast,

the experiments presented in the previous chapter computed ranges and sets for

entire SAT models. This meant that each discovered interval bound corresponded

to a complete assignment to the variables of the formula, thus each bound either

satisfied or falsified the formula, but never both.

Naturally, the question that follows is, could the algorithm be refined to lift

this restriction? The answer is yes, it is possible, by adjusting the Boolean formula

in even iterations of set abstraction. On even iterations, interval bounds should

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 64

be computed that correspond to minimum and maximum values of eax′ such

that the bounds satisfy ¬ξ for all assignments to the input vector eax. Thus

for even iterations of set abstraction, the input vector eax should be universally

quantified.

To illustrate, the second iteration of the above example should compute a

range r2 = [Value(l2, 0),Value(u2, 0)] such that:

l2 = Minimum(∀eax31. . . . ∀eax0. ∃T. ξ′′ ∧ l1 ≤0 eax
′, eax′, 0)

u2 = Maximum(∀eax31. . . . ∀eax0. ∃T. ξ′′ ∧ eax′ ≤0 u1, eax
′, 0)

where T is again the set of Tseitin variables. This poses a problem though. The

functions Minimum and Maximum call the SAT solver to obtain a minimum and

maximum model respectively, yet a quantified formula of the form ∀I. ∃T. f cannot

be passed directly to the solver. If the universal quantifiers are eliminated, then

the formula can be passed to the SAT solver, however, the innermost existential

quantifiers must be eliminated first.

There are standard techniques available to perform quantifier elimination (QE)

for Boolean formulae, but unfortunately there are aspects of these methods which

hinder their effectiveness. For example, expansion-based quantifier elimination [74]

could be used, however, by these methods the size of the formula can grow signif-

icantly, particularly when many variables are to be eliminated.

This chapter proposes an entirely new approach to quantifier elimination for

Boolean formulae. Specifically, the contributions of this chapter are as follows:

• An algorithm is presented that computes the prime implicates of a CNF for-

mula through the repeated generation of Chvátal cuts. The process is driven

by mixed-integer linear programming (MILP). Once the prime implicates

are found, it is straightforward to eliminate both universal and existential

quantifiers.

• Through the use of a cost function and blocking constraints, it is shown

that the method can avoid finding redundant implicates, thus reducing the

number of calls to the MILP solver.

• Experimental results are presented which show that the new algorithm finds

the prime implicates in much fewer operations than by traditional binary

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 65

resolution.

The remainder of this chapter will proceed as follows. Section 4.2 shows that

quantifier elimination is straightforward given the prime implicates and that bi-

nary resolution could, in principle, be used to find the prime implicates. Sec-

tion 4.3 describes Chvátal cuts and their relationship to binary resolution. Sec-

tion 4.4 presents the new algorithm which aims to automatically find the prime

implicates in as few Chvátal cuts as possible using mixed-integer linear program-

ming. In Section 4.6, experimental results are presented that evaluate the new

approach. Finally, Section 4.7 draws the chapter to a conclusion and suggests

some possible improvements to the algorithm.

4.2 Quantifier Elimination by Prime Implicates

This chapter suggests that one way to to eliminate quantifiers is via the prime

implicates.

Definition 24 (Implicate [36]). Given a formula f , a clause C is an implicate of

f if f implies C is valid.

Definition 25 (Prime Implicate [36]). Given a formula f , an implicate C is prime

if no other implicate of f implies C.

Every propositional formula can be reduced to an equisatisfiable conjunction of

irredundant prime implicates, denoted here as
∧
Fp, where Fp is the set of prime

implicates. Note that
∧
Fp is a CNF formula. The prime implicates lend them-

selves well to the problem of quantifier elimination. To appreciate this, observe

that:

• Given the conjunction of prime implicates
∧
Fp and a set of variables X, by

discarding all clauses of
∧
Fp that contain a variable appearing in X, the

resulting CNF formula g ≡ ∃X. ∧Fp. This is described by Lang et al. [77].

• Given a formula f in CNF, by removing all instances of the variable x in

either polarity, the resulting CNF formula g ≡ ∀x. f . This is called ∀-
reduction [74].

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 66

Notice that by dropping clauses from the prime implicates, not only are the exis-

tential quantifiers eliminated, but also the formula remains in CNF. This means

that ∀-reduction can be applied immediately after to eliminate universal quanti-

fiers. This would suggest that given a formula of the form ∀I. ∃T. f , the quantifiers

can be eliminated as shown in Algorithm 4.

Algorithm 4 Quantifier Elimination by Prime Implicates (QEPI)

Given a formula ∀I. ∃T. f , where f is in CNF, a quantifier-free equivalent formula
h can be computed as follows:

1. First, compute
∧
Fp of f .

2. Drop all clauses containing any variable of T , thus eliminating all existential
quantifiers. This gives a quantifier-free formula g ≡ ∃T f .

3. Remove all instances of the variables appearing in I to eliminate the uni-
versal quantifiers. This gives a quantifier-free formula h ≡ ∀I. g.

The formula h is both quantifier free and equivalent to ∀I. ∃T. f , thus the quan-

tifiers have been eliminated. Note that stages 2 and 3 are computationally inex-

pensive, meaning that the success of such an approach greatly depends upon the

feasibility of computing the prime implicates.

Traditionally, the prime implicates of a propositional formula are computed

by binary resolution and absorption:

Definition 26 (Binary Resolution [74]).

(c1 ∨ . . . ∨ cn ∨ β) (d1 ∨ . . . ∨ dm ∨ ¬β)

(c1 ∨ . . . ∨ cn ∨ d1 ∨ . . . ∨ dm)

where each ci and di are propositional literals and β is a variable. The resulting

clause is called the resolvent clause.

Definition 27 (Absorption [64]). A clause C absorbs a clause D if every literal

in C also appears in D.

By repeatedly closing a formula under resolution before simplification by absorp-

tion, the prime implicates are found [63], however, the number of resolution steps

required can be exponential in the number of the input clauses due to the large

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 67

number of redundant implicates generated. Directed resolution algorithms, or

bucket resolution algorithms [12], such as the Davis-Putnam algorithm [37] (not

to be confused with the DPLL algorithm of a similar name [40]) have been sug-

gested that aim to minimise the number or resolution steps required. Whilst

directed resolution is tractable for restricted forms of CNF, such as 2-CNF and

Horn clauses [40], in general the number of resolution steps required remains high.

Due to the shortcomings of resolution, the problem is approached from a dif-

ferent angle. The following sections show that that the prime implicates can be

computed by linear programming, namely through the generation of Chvátal cuts.

4.3 Chvátal Cuts

The relevance of Chvátal cuts stems from surprising parallels between proposi-

tional logic and linear algebra. These parallels were described in a survey by

Hooker [63]. The fundamental link between propositional logic and linear algebra

is the ability to encode clauses as linear inequalities over binary decision variables.

Definition 28 (Linear Clause Encoding). Given a propositional clause of the

form
∨
xi∈P xi ∨

∨
xi∈N ¬xi where P and N are sets of propositional variables, the

clause is encoded as a linear inequality as follows:∑
xi∈P

xi +
∑
xi∈N

(1− xi) ≥ 1 or equivalently
∑
xi∈P

xi +
∑
xi∈N

−xi ≥ 1− |N |

where each variable in the resulting linear equality is a binary decision variable

assuming a value of either 0 (for False) or 1 (for True).

Henceforth, the latter encoding is used, as it lends itself well to encoding as a

matrix. Further, for the remainder of this chapter, a propositional clause and

a corresponding linear constraint are considered equivalent, e.g. (x1 ∨ ¬x2) ≡
x1 − x2 ≥ 0. The upshot of this relationship is that propositional reasoning

can be performed with linear constraints. For example, it is possible to test

the satisfiability of a set of clauses via linear constraint solving. Given a CNF

formula, a system of linear inequalities can be constructed. If the constraints

can be satisfied by a {0, 1}-assignment to each of the variables, then the original

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 68

CNF formula is satisfiable. Of particular interest though, is the ability to perform

resolution through the generation of Chvátal cuts.

Chvátal’s method is traditionally applied for finding integer solutions to linear

programs. In this setting, a linear relaxation of an integer linear program (ILP) is

solved to give an initial solution, then if the solution is not already integral, cutting

planes (Chvátal cuts) are generated to separate non-integer vertices from the

feasible space. Surprisingly, Chvátal cuts can be used to find resolvent clauses [63].

Definition 29 (Chvátal Cut). Let Ax ≥ b be a system of linear inequalities

where x = 〈x1, . . . , xm〉 is a vector of {0, 1}-variables, A is an m × n matrix

of integer coefficients and b is a vector of integers. A Chvátal cut is a non-

negative linear combination of the constraint system with both sides rounded up,

i.e. duAex ≥ dube, where each ui of u is non-negative, but at least one ui > 0.

By encoding a CNF formula as a system of constraints (as shown in Definition 28)

and adding bounding constraints of the form 0 ≤ xi ≤ 1, a subset of Chvátal

cuts generated from the system will yield inequalities that can be interpreted as

resolvent clauses.

Example 3 (Resolution by Cutting Planes). Consider the CNF formula

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3). The clauses are encoded as inequalities as shown in

Definition 28 to give:

x1 +x2 +x3 ≥ 1

x2 −x3 ≥ 0

Bounding constraints are added:

x1 +x2 +x3 ≥ 1

x2 −x3 ≥ 0

x1 ≥ 0

−x1 ≥ −1

x2 ≥ 0

−x2 ≥ −1

x3 ≥ 0

−x3 ≥ −1

The linear combination obtained by u = 〈1/2, 1/2, 1/2, 0, 0, 0, 0, 0〉 is:

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 69

1/2 · x1 +1/2 · x2 +1/2 · x3 ≥ 1/2
1/2 · x2 −1/2 · x3 ≥ 0

1/2 · x1 ≥ 0

x1 +x2 ≥ 1/2

The combination is rounded up to arrive at the cut: x1 +x2 ≥ 1 ≡ (x1∨x2), which

can also be obtained by binary resolution of (x1 ∨ x2 ∨ x3) and (x2 ∨ ¬x3).

Note that not every Chvátal cut will yield an inequality which can be inter-

preted as a propositional clause. In the above example, u = 〈3/4, 3/4, 3/4, 0, 0, 0, 0, 0〉
gives a linear combination 11/2 · x1 + 11/2 · x2 ≥ 3/4, which when rounded up gives

a cut 2x1 + 2x2 ≥ 1 which does not correspond to a propositional clause.

Nevertheless, each inequality generated by a Chvátal cut that can be inter-

preted as a propositional clause corresponds to either an input clause or to a

resolvent clause and thus always to an implicate. The same resolvent clauses ob-

tained by binary resolution can be found by generating Chvátal cuts, therefore

in principle the prime implicates could be computed by exhaustive generation of

Chvátal cuts. There is no benefit in doing so however, as the method will suffer

from the same problems as exhaustive binary resolution. Observe though, that

the task of computing the prime implicates has been translated from the propo-

sitional domain into the domain of linear constraints. This raises the question

of whether a linear optimisation problem can be devised to find cuts that corre-

spond to resolvent clauses and furthermore, direct the search towards the prime

implicates, thus avoiding the generation of redundant implicates.

The algorithm outlined in the following sections derives the prime implicates

of a CNF formula via autonomous generation of Chvátal cuts. The algorithm is

coined PIDC (Prime Implicates by Directed Cutting). PIDC uses mixed-integer

linear programming to discover the prime implicates in as few cuts as possible and

avoids the discovery of redundant implicates. The algorithm will be described with

the aid of a worked example.

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 70

4.4 Worked Example

Suppose that the goal is to compute the prime implicates of the CNF formula:

(¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

Generation of cuts proceeds as follows:

1. The clauses are encoded into a system of inequalities Ax ≥ b with bounding

as shown in Example 3. These constraints are referred to as the clause

constraints so as to disambiguate them from MILP constraints.

2. A MILP problem is constructed that finds a linear combination uAx ≥ ub

such that duAex ≥ dube can be interpreted as a propositional clause. Ad-

ditionally, a cost function aims to find the cut whose propositional inter-

pretation contains the fewest literals. Intuitively, such a cut corresponds

to a short implicate. The problem is passed to a MILP solver and a solu-

tion is obtained, giving a linear combination x2 − x3 ≥ 0. The combina-

tion is rounded up (this step is ineffectual in this case) giving the first cut:

x2 − x3 ≥ 0 ≡ (x2 ∨¬x3). The cut is recorded and added as a new row into

the clause constraints.

3. A second MILP is constructed using the augmented clause constraints. This

time, a blocking constraint is added to the MILP instance. The blocking

constraint (described later in Section 4.5.1) serves two purposes. Firstly, it

prevents the same cut from being generated again. Secondly, it stipulates

that subsequently found cuts should not be absorbed by previously gener-

ated cuts. The MILP is solved and another solution is found. This time the

linear combination is −x1 + x2 ≥ −1/2. The combination is rounded up to

give the second cut: −x1 + x2 ≥ 0 ≡ (¬x1 ∨ x2). Again, the cut is recorded

and added to the clause constraints.

4. A third MILP is constructed in which blocking constraints are present for

the two previously found cuts. The MILP is solved yielding another linear

combination: −x1 ≥ −3/4. Once again, the combination is rounded up to

give a third cut −x1 ≥ 0 ≡ (¬x1). The cut is recorded and added to the

clause constraints.

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 71

5. A fourth MILP is constructed in which blocking constraints are present for

the three previously found cuts. The fourth MILP is solved. This time the

solver states that the problem is Infeasible, so generation of cuts ceases.

Once cut generation terminates, the accumulated cuts are propositionally in-

terpreted to give a set of implicates: {(x2 ∨ ¬x3), (¬x1 ∨ x2), (¬x1)}. Whilst the

algorithm does indeed find all cuts corresponding to non-redundant implicates,

in some cases redundant cuts are unavoidable. This can be seen here as (¬x1)

absorbs (¬x1 ∨ x2). Once the absorbed clause has been removed, the remaining

implicates are the prime implicates: {(¬x1), (x2∨¬x3)}. The conjunction of these

implicates would be the input of stage two of QEPI as outlined in Algorithm 4.

For this small example, PIDC finds the prime implicates through the discovery

of three cuts, one of which yields a redundant implicate. By contrast, exhaustive

binary resolution discovers five new implicates and discards four of them. This

is demonstrated by the graph in Figure 10. Furthermore, exhaustive resolution

would find the same implicates multiple times. For example, the redundant impli-

cate (¬x1∨¬x3) is derived twice: once by resolution of (x2∨¬x3) and (¬x1∨¬x2),

then again by resolution of (x2 ∨ ¬x3) and (¬x1 ∨ ¬x2 ∨ ¬x3). By finding short

implicates and by blocking weaker or duplicate implicates, PIDC finds the prime

implicates in fewer steps. The following section discusses in detail the formulation

of the optimisation problems underlying PIDC.

4.5 Mixed Integer Linear Programming

The construction of a MILP begins with the input clauses encoded as a linear

constraint system with bounding as demonstrated previously in Example 3. Fresh

variables are then introduced to represent a linear combination of the constraint

system. In the case of the first iteration of the worked example, PIDC starts with

the clause constraints shown in Figure 11.

The ui variables are rational variables representing the row coefficients of u

(see Definition 29). The sum, denoted sx ≥ e represents a linear combination

of the constraints. The integer variables s = 〈s1, s2, s3〉 where si ∈ {−1, 0, 1}
represent the coefficients of xi on the left hand side of the linear combination,

whereas the rational variable e represents the constant on the right hand side of

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 72

the linear combination. The linear combination is expressed as MILP constraints

by equating the sum of the u coefficients in each column with the corresponding si

or e coefficient. For the above clause constraints, the following MILP constraints

are generated:

s1 = −u1 − u2 − u4 + u5 − u6

s2 = −u1 + u2 + u3 − u4 + u7 − u8

s3 = −u1 + u2 − u3 + u4 + u9 − u10

e = −2 · u1 − u4 − u6 − u8 − u10

Any solution to the above MILP constraints will yield a linear combination

sx ≥ e, however, additional constraints need to be added to ensure that the lin-

ear combination will give a Chvátal cut that can be interpreted as a propositional

clause. In other words, a cut of the form
∑

xi∈P xi +
∑

xi∈N −xi ≥ 1− |N | should

be found (see Definition 28). Further, a cut that corresponds to a short implicate

should be found. To enforce these properties, several decision variables are de-

ployed. For each si, two binary variables oi and pi are introduced. Each oi variable

will indicate whether the corresponding xi literal occurs in the interpretation of

the cut, i.e. oi = 1 if si is non-zero. Each pi variable will indicate the polarity of

the corresponding xi literal in the propositional interpretation of the cut, zero for

(¬x1 ∨ x2 ∨ x3) (¬x1 ∨ ¬x2 ∨ x3) (¬x1 ∨ ¬x2 ∨ ¬x3)

(¬x1 ∨ x3) (x2 ∨ ¬x3) (¬x1 ∨ ¬x2)

(¬x1 ∨ x2) (¬x1 ∨ ¬x3)

(¬x1)

x2

x3

x3

x2
x2 x3

x3 x2

x2 x3

x3 x2

x3 x2

Figure 10: Implicates generated by exhaustive binary resolution of the worked ex-
ample. Underlined clauses are input clauses. Boxed clauses are prime implicates.

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 73

−u1 · x1 −u1 · x2 −u1 · x3 ≥ −2 · u1

−u2 · x1 +u2 · x2 +u2 · x3 ≥ 0 · u2

u3 · x2 −u3 · x3 ≥ 0 · u3

−u4 · x1 −u4 · x2 +u4 · x3 ≥ −1 · u4

u5 · x1 ≥ 0 · u5

−u6 · x1 ≥ −1 · u6

u7 · x2 ≥ 0 · u7

−u8 · x2 ≥ −1 · u8

u9 · x3 ≥ 0 · u9

−u10 · x3 ≥ −1 · u10

s1 · x1 +s2 · x2 +s3 · x3 ≥ e

Figure 11: Initial clause constraints for the worked example.

positive (or not occurring), and one for negative. The assignments to each oi and

pi are expressed by si = oi− (2pi). The correctness of this constraint is argued in

Section A.2 (Theorem 8, Page 175).

With the pi variables constrained in this way, the right hand side of the linear

combination can be constrained to ensure that a cut corresponding to a propo-

sitional clause is found. For the worked example, e is further constrained by the

inequality e ≥ ε− p1 − p2 − p3, where ε is a small constant just above zero (10−4

will suffice). This ensures that once the linear combination sx ≥ e is rounded up,

the resulting inequality can be interpreted as a propositional clause. Further, it

stipulates that at least one ui is non-zero, because when u = 〈0, . . . , 0〉, then it

follows that e is zero and each pi is also zero, thus the constraint is false.

Finally, a cost function is used to give preference to cuts with fewer variables

occurring, therefore finding a cut corresponding to a short implicate. This is key

to the method, as a short implicate is less likely to be absorbed by subsequently

found implicates and is more likely to be prime. To this end, the cost function

simply minimises the sum of the oi variables. For the worked example, the cost

function is minimise : o1 + o2 + o3.

With this, the MILP of the first iteration of the worked example is complete.

The full constraint system is shown in normalised form in Figure 12. The con-

straints are passed to a MILP solver, which returns a solution that assigns:

u = 〈0, 0, 1, 0, 0, 0, 0, 0, 0, 0〉 s = 〈0, 1,−1〉 e = 0

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 74

minimise o1 + o2 + o3 s.t.

integers s1, s2, s3, p1, p2, p3, o1, o2, o3

−1 ≤s1 ≤ 1 −1 ≤s2 ≤ 1 −1 ≤s3 ≤ 1

0 ≤p1 ≤ 1 0 ≤p2 ≤ 1 0 ≤p3 ≤ 1

0 ≤o1 ≤ 1 0 ≤o2 ≤ 1 0 ≤o3 ≤ 1

−∞ ≤e ≤ ∞
−u1 − u2 − u4 + u5 − u6 − s1 = 0

−u1 + u2 + u3 − u4 + u7 − u8 − s2 = 0

−u1 + u2 − u3 + u4 + u9 − u10 − s3 = 0

−2 · u1 − u4 − u6 − u8 − u10 − e = 0

s1 + 2 · p1 − o1 = 0

s2 + 2 · p2 − o2 = 0

s3 + 2 · p3 − o3 = 0

p1 + p2 + p3 + e ≥ ε

Figure 12: The complete MILP for the first iteration of the worked example.

By rounding up e in the linear combination, the cut x2 − x3 ≥ 0 ≡ (x2 ∨ ¬x3)

is found. In this case, the implicate is one of the input clauses. This is because

one of the input clauses is a prime implicate (see Figure 10). Note that, for the

above, rounding up e was ineffectual, however, this is not always the case. There

is no need to round the si variables as they may only assume integer values.

4.5.1 Enumerating Cuts

So far, it has been shown that a Chvátal cut corresponding to a short implicate

can be automatically generated using mathematical optimisation. However, cuts

must be enumerated until the prime implicates have been found. There are several

considerations that must be addressed:

1. It must be possible to find deeper cuts, i.e. cuts that only become feasible

having found intermediate cuts. Failure to find deeper cuts would mean

that only implicates corresponding to input resolution would be found [63].

Input resolution (resolution of clauses where at least one input clause is

used at each step) is not sufficient to find the prime implicates. This is

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 75

demonstrated by the graph shown in Figure 10. The only way to derive the

prime implicate (¬x1) is by resolution of clauses which are not input clauses.

2. The solver should not find cuts which correspond to an implicate already

known. Not only is a duplicate implicate useless, but the solver may repeat-

edly find the same implicate, thus compromising termination.

3. Subsequently found cuts should not yield implicates that are absorbed by

any previously found implicate. An implicate absorbed in this way must be a

weaker implicate than one that is already known and is therefore redundant.

The discovery of redundant implicates also wastes solving iterations, thus

impacting the performance and space requirements of the algorithm.

To illustrate how PIDC enumerates cuts, consider the beginning of step 3 of

the worked example (Section 4.4), where the first cut has been found and a second

MILP is about to be constructed. The first cut was x2− x3 ≥ 0. To make deeper

cuts feasible, the constraint x2 − x3 ≥ 0 is added as a new row into the clause

constraints as shown in Figure 131. The augmented clause constraints are then

encoded into a new MILP as described before. To ensure that cuts corresponding

to absorbed or duplicate implicates are not found, for each cut found so far, a

blocking constraint is added to the MILP.

Definition 30 (Blocking Constraint). Given a linear constraint of the form∑
xi∈P xi +

∑
xi∈N −xi ≥ 1 − |N |, where P and N are sets of decision variables,

a blocking constraint is:∑
xi∈P

(−oi + pi) +
∑
xi∈N

(−oi − pi) ≥ 1− |P | − 2 · |N |

At step 3 of the worked example, the cut x2−x3 ≥ 0 has just been found. For

this cut, P = {x2} andN = {x3}, so the blocking constraint−o2+p2−o3−p3 ≥ −2

is added to the MILP instance. The addition of a blocking constraint asserts that

either a) at least one of the occurring variables of the cut must not occur in

subsequently found cuts, or b) the occurring variables of the cut may occur in

1Actually, in this case it is not strictly necessary to add the cut because x2 − x3 ≥ 0 already
exists in the clause constraints. Since this is not always the case, and for purpose of example,
the constraint is added anyway.

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 76

−u1 · x1 −u1 · x2 −u1 · x3 ≥ −2 · u1

−u2 · x1 +u2 · x2 +u2 · x3 ≥ 0 · u2

u3 · x2 −u3 · x3 ≥ 0 · u3

−u4 · x1 −u4 · x2 +u4 · x3 ≥ −1 · u4

u5 cotx1 ≥ 0 · u5

−u6 · x1 ≥ −1 · u6

u7 · x2 ≥ 0 · u7

−u8 · x2 ≥ −1 · u8

u9 · x3 ≥ 0 · u9

−u10 · x3 ≥ −1 · u10

u11 · x2 −u11 · x3 ≥ 0 · u11

s1 · x1 +s2 · x2 +s3 · x3 ≥ e

Figure 13: Clause constraints for the second iteration of the worked example.

subsequently found cuts, but at least one literal must have differing polarity. It

is easier to see this by taking the propositional interpretation of the blocking

constraint, e.g. −o2 + p2 − o3 − p3 ≥ −2 ≡ (¬o2 ∨ p2 ∨ ¬o3 ∨ ¬p3). Remember,

when pi = 1, xi is negative.

Once the blocking constraint has been added to the MILP, the problem is

passed to the solver to find the next cut. The second MILP of the worked

example is shown in Figure 14. The solver returns a solution assigning u =

〈1/4, 3/4, 1/2, 0, 0, 0, 0, 0, 0, 0, 0〉. This gives the linear combination −x1 + x2 ≥ −1/2.

The right hand side is rounded up to give a cut: −x1 + x2 ≥ 0 ≡ (¬x1 ∨ x2).

4.5.2 Termination

The enumeration process continues until the solver returns Infeasible. By tak-

ing the accumulated cuts, interpreting them as clauses and simplifying them via

absorption, the prime implicates are found. The absorption stage is necessary as

in some cases redundant implicates must be found in order to find a prime impli-

cate. For example, the worked example finds the redundant implicate (¬x1 ∨ x2)

which is absorbed by the prime implicate (¬x1). The discovery of a redundant

implicate is unavoidable in this case, as (¬x1) can only be discovered by resolution

with a redundant implicate (see Figure 10).

Alternatively, PIDC may terminate upon detecting the empty clause. The

empty clause is characterised by a MILP solution where each si = 0 and e = ε. In

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 77

minimise o1 + o2 + o3 s.t.

integers s1, s2, s3, p1, p2, p3, o1, o2, o3

−1 ≤s1 ≤ 1 −1 ≤s2 ≤ 1 −1 ≤s3 ≤ 1

0 ≤p1 ≤ 1 0 ≤p2 ≤ 1 0 ≤p3 ≤ 1

0 ≤o1 ≤ 1 0 ≤o2 ≤ 1 0 ≤o3 ≤ 1

−∞ ≤e ≤ ∞
−2 · u1 − u4 − u6 − u8 − u10 − e = 0

−u1 − u2 − u4 + u5 − u6 − s1 = 0

−u1 + u2 + u3 − u4 + u7 − u8 + u11 − s2 = 0

−u1 + u2 − u3 + u4 + u9 − u10 − u11 − s3 = 0

s1 + 2 · p1 − o1 = 0

s2 + 2 · p2 − o2 = 0

s3 + 2 · p3 − o3 = 0

p1 + p2 + p3 + e ≥ ε

p2 − p3 − o2 − o3 ≥ −2

Figure 14: The complete MILP for the second iteration of the worked example.

such a case, the input formula is inconsistent. When the empty clause is detected,

PIDC halts, flagging the formula as inconsistent. It is interesting to note that it

is the top priority of the solver to find the empty clause. When each si is zero,

necessarily each oi must also be zero (see Theorem 8 on Page 175). Because the

cost function aims to minimise the sum of the oi variables, the empty clause is,

in the eyes of the solver, the most optimal solution that could ever be found.

This means that PIDC “hones in” on the empty clause if the input formula is

inconsistent.

4.5.3 Implementation Detail

Notice that upon discovery of each new cut, the clause constraints are amended

and a new MILP is encoded. The algorithm was described in this way to aid

reader understanding. The implementation from which the experimental results

are taken does not amend the clause constraints or encode a fresh MILP for each

iteration of the algorithm. Instead, the existing MILP is adjusted to reflect the

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 78

necessary changes. Namely, u is extended with a fresh rational variable, the

inequalities constraining si and e are amended and a blocking constraint is added.

Note that although the existing clause constraints are re-used and modified, the

solving process is not incremental in the classical SAT/SMT sense [75].

4.6 Experimental Results

To evaluate PIDC, the method was compared with the binary resolution approach

to computing the prime implicates. If PIDC is feasible, then it can be used as the

first stage of the proposed QEPI algorithm (described in Section 4.2).

The test environment is underpinned by a random test harness that generates

random CNF formulae based upon a number of tunable parameters: the number

of variables over which a formula is defined, the number of random clauses in a

formula, the minimum clause size and the maximum clause size. By providing

values for these parameters, the test harness is able to generate random test

cases and then compute the prime implicates, first by binary resolution and then

once more by PIDC. There are two metrics of interest: the number of operations

required to compute prime implicates and the time taken to compute the prime

implicates. An operation is defined to be a resolution operation, a Chvátal cut, or

an absorption operation. The number of these operations will serve as an indicator

of the amount of redundant work expended by either technique. The solving times

will indicate the feasibility of PIDC in practice.

The test harness was written in Python. MILP solving was performed using

the Python bindings to LPSolve (calling out to C). Binary resolution was per-

formed from within Python using the built-in frozenset data structure. The

binary resolution algorithm that was used is shown in Algorithm 5. Note that

to avoid running out of memory, exhaustive resolution was not used. Instead,

a more systematic approach is used, which simplifies the formula between input

resolution phases. Alternatively, a method such as bucket elimination could have

been deployed [39]. The binary resolution implementation also plays the role of

an oracle, verifying the correctness of each solution given by PIDC.

Three sets of experiments were conducted:

1. Random CNFs over 5 variables and 8 clauses of size between 1 and 4 literals.

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 79

Algorithm 5 Binary resolution algorithm used in experiments.

function BinRes(C) . Takes a set of clauses C.
v ←Vars(C)
I ← C . I will be the returned implicates.
I ′ ← ∅ . The last iteration’s implicates, for detecting a fixpoint.
while I ′ 6= I do

N ← ∅ . N is the new resolvents found this iteration.
for vi ∈ v do

. Partition the clauses of I by +ve and -ve occurrences of vi.
〈I+, I−〉 ← Partition(I, vi)
β ← ∅ . Collects new resolvents found by resolution upon vi.
for p ∈ I+ do

for n ∈ I− do
r ←ResolveClauses(p, n)
if NotTautologyClause(r) then

β ← β ∪ r
end if

end for
end for
N ← N ∪ β

end for
I ′ ← I . Caches the set of implicates from the last iteration.
I ←Simplify(N ∪ I) . Simplification by absorption.

end while
return I . The prime implicates are returned.

end function

2. Random CNFs over 10 variables and 16 clauses of size between 1 and 4 literals.

3. Random CNFs over 20 variables and 32 clauses of size between 1 and 4 literals.

A small number of clauses were used for each CNF so that binary resolution could

operate within the resource constraints of the test machine (4GB of RAM). The

number of literals per clause was chosen so as to reflect the typical clause length

of a formula that has undergone the Tseitin transformation [115]. For each set

of experiments, 2000 samples were taken. Each individual experiment was given

a 20 second time allowance to complete. Any experiment taking longer than this

was terminated and disregarded.

The experimental results are shown in Figures 15 to 20. Figures 15, 17

and 19 show the number of operations performed by binary resolution (x-axis)

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 80

plotted against the number of operations performed by PIDC (y-axis). On each

of these graphs, a line separates the points where binary resolution required more

operations than PIDC2. For all three sets of experiments, the majority of the points

fall beneath the line, indicating that PIDC usually discovers the prime implicates

in fewer operations than binary resolution. The effect is most exaggerated by

the results of the third set of tests (Figure 19), where binary resolution could

require more than 12,000 operations, whereas PIDC requires no more than 60.

Also notice that there is always a cluster of points across x = 1; upon further

inspection, these points correspond to experiments where the randomly generated

formula was inconsistent and where the empty clause could be derived in the first

iteration of PIDC.

Figures 16, 18 and 20 show the solving times in seconds of binary resolution

(x-axis) plotted against the solving times of PIDC (y-axis). On each of these

graphs, a line separates the points where binary resolution took the longest from

the points where PIDC took the longest. Unfortunately, for all three sets of

experiments, most of the points fall above the line, indicating that in most cases

PIDC takes longer to find the prime implicates. For the small experiments of

the first test set (Figure 16), PIDC is a bit slower, but remains competitive with

binary resolution. As the size of the input is increased (Figures 18 and 20), the

difference in solving times increases, with PIDC performing significantly worse.

In fact, in the third test set, 208 of the 2000 experiments caused the 20 second

timeout to fire when solved by PIDC, yet binary resolution managed to find the

prime implicates in no more than 0.8 seconds.

4.7 Chapter Summary

This chapter has shown that the prime implicates of a CNF formula can be com-

puted by a series of linear optimisation problems (PIDC). Through this construc-

tion, cost functions and blocking constraints can be deployed to search for short

implicates, therefore reducing the number of redundant implicates found. Since

existential QE and universal QE are straightforward given the prime implicates,

the proposed algorithm can be used as part of the process of deriving a quantifier-

free formula equivalent to ∀I. ∃T. f .

2In Figure 19 this line is on top of the y-axis.

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 81

Figure 15: Number of operations required for problems containing 5 variables and
8 clauses of length between 1 and 4.

Figure 16: Solving times for problems containing 5 variables and 8 clauses of
length between 1 and 4.

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 82

Figure 17: Number of operations required for problems containing 10 variables
and 16 clauses of length between 1 and 4.

Figure 18: Solving times for problems containing 10 variables and 16 clauses of
length between 1 and 4.

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 83

Figure 19: Number of operations required for problems containing 20 variables
and 32 clauses of length between 1 and 4.

Figure 20: Solving times for problems containing 20 variables and 32 clauses of
length between 1 and 4.

CHAPTER 4. QUANTIFIER ELIMINATION WITH OPTIMISATION 84

Eliminating quantifiers from the prime implicates is inexpensive, so the feasi-

bility of the approach is predicated upon the feasibility of computing the prime

implicates. Experimental results show that the number of operations required to

compute the prime implicates by PIDC is much fewer than by binary resolution.

The technique also has the advantage that it finds the empty clause quickly if

the input formula is inconsistent. Unfortunately PIDC does not scale well and

binary resolution was able to find the prime implicates faster in most cases. The

suboptimal performance of PIDC is likely to be attributed to the use of integer

variables in the optimisation problems. A linear optimisation problem with no in-

teger variables is in complexity class P. By enforcing integrality upon the variables

of a linear program, the problem is promoted to NP-complete [106]. It follows that

ILP must also be NP-hard.

Despite the shortcomings of the new technique, it has at least been shown

that it is possible to compute the prime implicates as an optimisation problem. If

PIDC could be improved so that the time taken to compute a single cut matched

that of a single binary resolution step, then the PIDC would, without a doubt,

out-perform binary resolution. This can be seen by comparing the number of

operations required to compute the prime implicates by each algorithm. One

possible way to speed up the algorithm might involve the relaxation of the integer

variables, however, it is not immediately clear how this could be achieved. It may

also be possible to port the algorithm to a different decision procedure, where the

interplay between decision variables and linear constraints could be handled more

efficiently.

In conclusion, it has yet to be seen whether range and set abstraction com-

bined with quantifier elimination would be feasible for inferring ranges and sets

of register values.

Chapter 5

Range Analysis using Linear

Programming

5.1 Introduction

At this point in the thesis, the focus of study shifts slightly. The work shown in

the previous two chapters presented ways by which to infer ranges and sets for

any given register at any given program point. Whilst these methods are useful

for inferring ranges (and sets) for strategically selected sites in a binary program

– for example, indirect jumps – often it is useful to infer ranges and sets for every

register at every program point. Perhaps we want to show that a property holds

for the entire program’s execution. In principal, it is possible to infer ranges

and sets for the entire program by range and set abstraction, however this would

mean running an analysis once for each register at each program point. Such an

approach is unlikely to be practical when analysing binary programs consisting of

hundreds or thousands of program points.

In this chapter (and the next), a more general range analysis is described; one

which can infer a range for each register at each program point in a single invoca-

tion. This range analysis assumes that the control flow graph is already known,

meaning that range and set abstraction (with a suitable quantifier elimination

strategy) remain relevant, if only as a preliminary analysis to uncover the control

flow graph. Of course, if it is assumed that the CFG is known, there is nothing

85

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 86

precluding the application of standard abstract interpretation techniques. How-

ever, as has already been discussed, such techniques often suffer from problems

relating to fixpoint convergence. The range analysis described in the following sec-

tions aims to sidestep these hindrances by using an alternative solving strategy,

namely, linear optimisation.

5.2 Motivation

In the introductory chapter of this thesis, several applications for binary analysis

were identified. Amongst these applications, and probably the most prolific at

this time, are the applications relating to security. Of particular interest to the

government, to the military and to penetration testers, is the problem of audit-

ing commercial off-the-shelf software (COTS) packages for security vulnerabilities.

COTS is being increasingly deployed since it is seen to reduce development times.

However, these components are written by third-parties, typically with an eye

towards functionality rather than security and reliability [41]. This motivates

consumers to audit COTS components prior to deployment. Specifically, it is im-

portant to know whether a software product is susceptible to (amongst others)

buffer overflows, integer overflows, race conditions, etc. If exploited, these vul-

nerabilities could be used maliciously to corrupt the system on which the code

is running, to obtain sensitive data or to execute arbitrary code. Sadly, exploits

for high profile software products are published all too often. Even now, a large

portion of the exploits published on the Internet still involve a buffer overflow [1].

Unfortunately, auditing for security vulnerabilities is not straight-forward where

COTS components are concerned. These packages are commercial products whose

source code is kept secret. This prevents competing software houses from exam-

ining the inner workings and also makes “cracking” more difficult1. For these rea-

sons, COTS packages are usually delivered as pre-compiled binaries and linkable

shared libraries only [122]. Some companies go as far as to obfuscate their binary

code, making it only more opaque. Because the components are distributed in a

binary-only form, standard software engineering tools, like linters and static anal-

ysers built into compilers or the development environment itself, are no longer of

use for auditing because they require the source code. As a consequence, analyses

1See Page 2 for a description of crackers and cracking.

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 87

must occur at the binary level.

When examining binary code, range information can often help to identify

possible vulnerabilities by, for example, inferring that an indirect memory access

may be out of bounds; this may correspond to an out of bounds array access

in the source code. Whilst it is recognised that range information can aid the

security engineer in the auditing process [42], most industrial decompilers do not

currently infer ranges for the values stored in registers and memory. This is

surprising because the interval domain has been studied in great detail and is

often the subject of pedagogical discussions relating to static analysis and abstract

interpretation.

Perhaps the reason why intervals have not been adopted for use in decompilers

relates to the fact that, in order for an interval analysis to be fast, a widening

strategy must be devised [32]. Even for finite-precision signed 32-bit computer

integers, the domain of intervals, D = {∅} ∪ {[l, u] | −231 ≤ l ≤ u ≤ 231 − 1}, ad-

mits long ascending chains such as d0 = ∅ and dn+1 = [0, n] where n ∈ [0, 232− 1].

As discussed in Chapter 2, widening can be integrated into an abstract interpre-

tation to guarantee fast termination, albeit at the cost of precision.

To illustrate, observe that the lower bound in the chain d0, d1, d2, . . . is stable

after d1, whilst the upper bound is strictly increasing. Widening would typically

enlarge, literally widen, d3 to [0, 231 − 1] to preserve the lower bound of 0 whilst

relaxing the upper bound to the maximum representable signed integer. This

side-steps the generation of the intermediates d4, . . . , d231−2. A fixpoint is reached

very quickly and the abstraction remains sound (in that all possible states are

captured by the over-approximate interval). It could be argued however, that this

widening scheme is overly aggressive. Suppose that the chain’s least-fixpoint is

d31 = [0, 31]. A widening strategy that over-approximates the possible values as

[0, 232 − 1] is hardly precise.

In response to this shortcoming, variations of widening have been proposed

which aim to find more precise information. One variation prescribes a set of

increasing thresholds which are widened to in a series of steps. If relaxing a bound

to one threshold is not sufficient for stability, then the next threshold is tried, and

so on. This is called widening with thresholds [14]. Note that the threshold values

themselves must be specified a priori and it is not always obvious what appropriate

thresholds may be. With a view towards automation, widenings [57, 109] have

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 88

been suggested that infer the thresholds based on the structure of a program,

in particular, where a transition in a chain from one interval to the next flips

an abstract semantic equation from being unsatisfiable to being satisfiable. This

usually signifies a change in program behaviour, such as the exit condition of a

loop being satisfied for the first time. By widening to these semantic thresholds,

the analysis is much more likely to find a precise fixpoint. The counter argument

for these methods is that they are either speculative (as with [109]) or require two

analyses to be run side-by-side (as with [57]).

The method in this chapter takes a different approach entirely. Namely, com-

putation of the least-fixpoint is performed by mathematical optimisation. The

method is heavily inspired by the pioneering work of Rugina et al. [99], who

showed that range analysis by optimisation is not only possible, but also advan-

tageous. The constraint solver effectively replaces Kleene iteration, so the need

for widening is dispelled completely and the least-fixpoint is computed directly.

Such an approach is much more suited to the application of decompilers, where

ranges are expected to be precise, but also inferred automatically. Unfortunately,

it was found that Rugina’s method was unsound with regards to certain kinds

of conditional constructs. The method described in this chapter shows that for

soundness (and precision) non-linear constraints are required to correctly model

conditionals. Specifically the contributions are:

• It is shown that range analysis can be formulated in terms of min and max

constraints.

• By contrast to traditional Kleene iteration, a method is shown which com-

putes the least-fixpoint of the constraints by repeatedly calling a linear pro-

gramming solver.

• Heuristics are given to minimise the number of calls to the solver required.

These heuristics significantly improve the performance of the algorithm.

• Experimental results indicate that the method is feasible and can be used

to find potential buffer overflow vulnerabilities in binary code.

The structure of the remainder of this chapter is as follows. Section 5.3 gives

a high-level overview of the method with a worked example, then Section 5.5

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 89

shows how to solve systems of inequalities containing disjunctions using repeated

linear programming (LP). Experimental results are shown in Section 5.6 and in

Section 5.7 the shortcomings of Rugina’s method are discussed. The chapter is

concluded in Section 5.8.

5.3 Worked Example

This section shows how ranges can be derived as an optimisation problem and

without resorting to widening. Although the method is targeted at the binary

level, the following worked example analyses a high-level pseudo-code program so

as to aid reader comprehension. Later, experimental results for binary programs

are shown.

1 i := 10;

2 while (i ≥ m)

3 m := m + 1;

4 endwhile

5 // last program point

Listing 5.1: Worked Example Program.

1

2

3

4

5

Figure 21: Control flow graph for the worked example program.

5.3.1 Collecting Semantics

Listing 5.1 shows a small program where the program points are annotated 1

through to 5. Suppose that each variable is a signed 32-bit integer and that

m ∈ [5, 20] prior to execution (at program point 1). The overall goal of the

analysis is to summarise the values of each variable at each of the program points

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 90

using intervals, but without actually running the program. First the concrete

domain is specified, over which the collecting semantics is defined. This semantics

must capture the possible values of the two variables i and m at each program

point.

To this end, let the set of possible 32-bit signed integers be Z = {x | −231 ≤
x ≤ 231 − 1}. The possible values that any given variable could assume at any

single program point is then a subset of Z. So as to account for multiple variables,

the possible states at any given program point are expressed as a set of n-vectors

drawn from ℘(Zn), where n parameterises the concrete domain according to the

number of program variables. The worked example program is concerned with

the abstraction of two variables per program point, so in this case n = 2 and the

concrete state at each program point is a set of 2-vectors. To simplify notation,

let U = ℘(Zn). This shall serve as the concrete domain. The ordering and the

domain operations of U are defined in the usual manner, so as to form a complete

and finite lattice:

Definition 31 (Ordering and domain operations for U).

Si ⊆U Sj ⇐⇒ Si ⊆ Sj

Si ∪U Sj , Si ∪ Sj
Si ∩U Sj , Si ∩ Sj

Once the concrete domain is specified, the collecting semantics of can be de-

fined. For each program point, Pk, a set Sk ∈ U represents the possible concrete

states. A set of recursive equations defines and relates each of these sets. For the

worked example program, the collecting semantics are as follows:

S1 = {〈i,m〉 | −231 ≤ i ≤ 231 − 1 ∧ 5 ≤ m ≤ 20}
S2? = {〈10,m〉 | 〈i,m〉 ∈ S1}
S2 = S2? ∪ S4

S3 = {〈i,m〉 | 〈i,m〉 ∈ S2 ∧ i ≥ m}
S4 = {〈i,min(m+ 1, 231 − 1)〉 | 〈i,m〉 ∈ S3}
S5 = {〈i,m〉 | 〈i,m〉 ∈ S2 ∧ i < m}

The dependencies between the program points, hence the dependencies between

the sets, are illustrated by the control flow graph (CFG) shown in Figure 21. Note

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 91

Figure 22: (a) S = {〈2, 2〉, 〈5, 3〉, 〈1, 5〉, 〈6, 6〉, 〈8, 9〉} (b) αU(S) = [1, 8]× [2, 9]

how S2 is defined in terms of S4 and S2? which, in turn, is defined in terms of S1.

This is because control passes from program point 1 and 4 to program point 2.

The set S2? is merely introduced as a calculational device (an intermediate set)

that is used to decompose S2 into an update operation and a merge operation,

that define S2? and S2 respectively. Note too that for now the collecting semantics

do not faithfully reflect the possibility of integer overflows. Instead, the increment

operation at program point 3 is assumed to be a saturating computation. In

actuality, an overflow may not occur for this particular example. In the next

chapter, however, an extension to the method described here is proposed which

takes care of integer overflow scenarios.

5.3.2 Abstract Semantics

Every subset of Z can be efficiently abstracted by an interval drawn from the

abstract domain D = {∅} ∪ {[l, u] | −231 ≤ l ≤ u ≤ 231 − 1}. It follows that each

element of the concrete domain can be abstracted by n intervals, i.e. an element

drawn from Dn. For the worked example, two variables will be abstracted per

program point, so each element of the abstract domain will be drawn from D2.

The ordering and domain operations upon Dn are lifted from D in the obvious

way:

Definition 32 (Ordering and domain operations for Dn).

〈d1, . . . , dn〉 vDn 〈d′1, . . . , d′n〉 ⇐⇒ d1 vD d′1 ∧ . . . ∧ dn vD d′n

〈d1, . . . , dn〉 tDn 〈d′1, . . . d′n〉 , 〈d1 tD d′1, . . . , dn tD d′n〉
〈d1, . . . , dn〉 uDn 〈d′1, . . . d′n〉 , 〈d1 uD d′1, . . . , dn uD d′n〉

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 92

where vD,tD and uD are the standard ordering, join operation and meet opera-

tion of the interval domain [32]. Similarly, αZ : Z → D and γD : D → Z are the

standard interval abstraction and concretisation mappings. The correspondence

between the concrete domain U and the abstract domain Dn is then formalised

as follows:

Definition 33 (Correspondence between U and Dn).

αU : U → Dn

αU(S) = 〈αZ(v1), . . . , αZ(vn)〉 where vi = {pi | 〈p1, . . . , pn〉 ∈ S}

γDn : Dn → U

γDn(〈d1, . . . , dn〉) = {〈v1, . . . , vn〉 | v1 ∈ γD(d1) ∧ . . . ∧ vn ∈ γD(dn)}

Each n-tuple of intervals 〈d1, . . . , dn〉 ∈ Dn is interpreted as its Cartesian

product d1 × . . . × dn which defines a hyper-rectangle in n-dimensional space.

Observe also how αU(S) computes the least hyper-rectangle that encloses each

n-vector in S. This is illustrated graphically for n = 2 in Figure 22.

With this relationship in place, the collecting semantics can be relaxed to a

system of recursive equations that operate over hyper-rectangles drawn from Dn.

For each program point, Pk, an abstraction S ′k ∈ Dn aims to best characterise Sk ∈
U . From here onward, subscripts on domain operations (t and u) are omitted for

readability2. The following recursive equations are the abstract semantics for the

worked example:

S ′1 = 〈[−231, 231 − 1], [5, 20]〉
S ′2? = 〈[10, 10],m〉 where 〈i,m〉 = S ′1

S ′2 = S ′2? t S ′4
S ′3 = 〈[li, ui] u [lm, 2

31 − 1], [lm, um] u [−231, ui]〉
where 〈[li, ui], [lm, um]〉 = S ′2

S ′4 = 〈i, [min(lm + 1, 231 − 1),min(um + 1, 231 − 1)]〉
where 〈i, [lm, um]〉 = S ′3

S ′5 = 〈[li, ui] u [−231, um − 1], [lm, um] u [li + 1, 231 − 1]〉
where 〈[li, ui], [lm, um]〉 = S ′2

2The exact operation can be inferred from the operand types.

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 93

5.3.3 Direct Calculation of the Abstract Semantics

Traditionally, the above abstract semantics would be solved to a fixpoint using

Kleene iteration. As discussed in Chapter 2, this amounts to the repeated eval-

uation of the abstract semantic equations until the intervals stabilise. However,

a widening operator is typically required to ensure fast termination in case long

ascending chains are encountered. Whilst it is possible to find the least-fixpoint

(the tightest hyper-rectangles) with widening, in general there is no guarantee

that this will be the case. This is because widening may incur a further loss of

precision, giving a post-fixpoint solution. A post-fixpoint is a sound but imprecise

solution.

Alternatively, the best hyper rectangles can be found directly using mathemat-

ical optimisation. By this method there is no explicit iteration process, meaning

that there is no need to specify a widening operator. Let S ′1 = 〈[li,1, ui,1], [lm,1, um,1]〉
∧ . . .∧ S ′5 = 〈[li,5, ui,5], [lm,5, um,5]〉, where each pair of intervals correspond to the

possible values of i and m at a specific program point. The abstract semantics

undergoes a transformation (detailed in the next section) so as to arrive at the

following optimisation problem:

minimise
5∑
j=1

(ui,j − li,j) +
5∑
j=1

(um,j − lm,j) s.t.

li,1 = −231 ∧ ui,1 = 231 − 1 ∧
li,2? = 10 ∧ ui,2? = 10 ∧
li,2 = min(li,2?, li,4) ∧ ui,2 = max(ui,2?, ui,4) ∧
li,3 = max(li,2, lm,2) ∧ ui,3 = ui,2 ∧
li,4 = li,3 ∧ ui,4 = ui,3 ∧
li,5 = li,2 ∧ ui,5 = min(ui,2, um,2 − 1) ∧
lm,1 = 5 ∧ um,1 = 20 ∧
lm,2? = lm,1 ∧ um,2? = um,1 ∧
lm,2 = min(lm,2?, lm,4) ∧ um,2 = max(um,2?, um,4) ∧
lm,3 = lm,2 ∧ um,3 = min(um,2, ui,2) ∧
lm,4 = min(lm,3 + 1, 231 − 1) ∧ um,4 = min(um,3 + 1, 231 − 1) ∧
lm,5 = max(lm,2, li,2 + 1) ∧ um,5 = um,2

Figure 23: Optimisation problem for the worked example.

The constraint system is, for most part, composed of linear equalities. The

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 94

only exceptions to this are the min and max constraints which are used to realise

control flow joins, conditional branching and saturating arithmetic. For exam-

ple, the constraints li,2 = min(li,2?, li,4) and ui,2 = max(ui,2?, ui,4) assert that

[li,2, ui,2] is the smallest interval that encloses both [li,2?, ui,2?] and [li,4, ui,4]. Like-

wise lm,2 = min(lm,2?, lm,4) and um,2 = max(um,2?, um,4) assert tight bounds on m.

In combination, these four constraints symbolically define S ′2 as the merge of the

hyper-rectangles S ′2? and S ′4. Modelling the loop condition i ≥ m is a particular

subtlety. Note how li,3 = max(li,2, lm,2) and ui,3 = ui,3 strengthen (not weaken)

the lower bound of i but preserve its upper bound. Conversely, lm,3 = lm,2 and

um,3 = min(ui,2, um,2) refine the upper bound of m but preserve its lower bound.

An analogous construction is used to model the loop exit condition. The cost

function asserts that the desired solution is the least (best) hyper-rectangle that

satisfies all of the constraints.

By solving the above (with the technique outlined in Section 5.5) the following

ranges are inferred, which characterise the least-fixpoint of the abstract semantics:

S ′1 = 〈[−231, 231 − 1], [5, 20]〉
S ′2 = 〈[10, 10], [5, 20]〉
S ′3 = 〈[10, 10], [5, 10]〉

S ′4 = 〈[10, 10], [6, 11]〉
S ′5 = 〈[10, 10], [11, 20]〉

5.4 Deriving the Initial Optimisation Problem

As previously mentioned, the technique described in this chapter relies upon the

generation of an optimisation problem. This optimisation problem is then used

as a basis for finding the least-fixpoint of the abstract semantics. This section

describes how the optimisation problem is derived.

Given a set of fixpoint equations defined over the abstract domain Dn, con-

straint generation begins by assigning each interval bound a symbolic name. For

an interval representing the possible states of the variable v at program point p,

the symbolic names lv,p and uv,p are introduced. For the worked example program,

symbolic names are defined for the interval bounds of i and m at each program

point such that: S ′1 = 〈[li,1, ui,1], [lm,1, um,1]〉 ∧ . . . ∧ S ′5 = 〈[li,5, ui,5], [lm,5, um,5]〉.
Next, the abstract semantics is rewritten in terms of the symbolic names to arrive

at a revised abstract semantics. The revised abstract semantics for the worked

example program is shown in Figure 24.

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 95

〈[li,1, ui,1], [lm,1, um,1]〉 = 〈[−231, 231 − 1], [5, 20]〉
〈[li,2?, ui,2?], [lm,2?, um,2?]〉 = 〈[10, 10], [lm,1, um,1]〉
〈[li,2, ui,2], [lm,2, um,2]〉 = 〈[li,2?, ui,2?], [lm,2?, um,2?]〉 t 〈[li,4, ui,4], [lm,4, um,4]〉
〈[li,3, ui,3], [lm,3, um,3]〉 = 〈[li,2, ui,2] u [lm,2, 2

31 − 1], [lm,2, um,2] u [−231, ui,2]〉
〈[li,4, ui,4], [lm,4, um,4]〉 = 〈[li,3, ui,3], [min(lm,3 + 1, 231 − 1),min(um,3 + 1, 231 − 1)]〉
〈[li,5, ui,5], [lm,5, um,5]〉 = 〈[li,2, ui,2] u [−231, um,2 − 1], [lm,2, um,2] u [li,2 + 1, 231 − 1]〉

Figure 24: Revised abstract semantics for the worked example.

Each of the revised abstract semantic equations is then transformed into a

conjunction of constraints. The transformation occurs in a syntactically driven

manner as follows:

• For a semantic equation of the form:

〈[l1, u1], . . . , [ln, un]〉 = 〈[l′1, u′1], . . . , [l′n, u
′
n]〉

the following constraints are generated:

n∧
x=1

lx = l′x ∧ ux = u′x

• For a semantic equation of the form:

〈[l1, u1], . . . , [ln, un]〉 = 〈[l′1, u′1], . . . , [l′n, u
′
n]〉 t 〈[l′′1 , u′′1], . . . , [l′′n, u

′′
n]〉

the following constraints are generated:

n∧
x=1

lx = min(l′x, l
′′
x) ∧ ux = max (u′x, u

′′
x)

• Finally, for a semantic equation of the form:

〈[l1, u1], . . . , [ln, un]〉 = 〈[l′1, u′1] u [l′′1 , u
′′
1], . . . , [l′n, u

′
n] u [l′′n, u

′′
n]〉

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 96

the following constraints are generated:

n∧
x=1

lx = max (l′x, l
′′
x) ∧ ux = min(u′x, u

′′
x)

By applying this transformation to the revised abstract semantics, a system

of (non-linear) constraints is derived. The constraints are accompanied by an

objective function to form an optimisation problem. The objective function aims

to find the tightest possible interval bounds and thus the least solution corresponds

with the least-fixpoint of the abstract semantics.

The optimisation problem for the worked example program is shown in Fig-

ure 23. Note that some constraints have been simplified. For example, the abstract

semantic equation:

〈[li,3, ui,3], [lm,3, um,3]〉 = 〈[li,2, ui,2] u [lm,2, 2
31 − 1], [lm,2, um,2] u [−231, ui,2]〉

is transformed into the following constraints:

li,3 = max(li,2, lm,2) ∧ ui,3 = min(ui,2, 2
31 − 1)

lm,3 = max(lm,2,−231) ∧ um,3 = min(um,2, ui,2)

Recall that each interval of the form [lx,k, ux,k] describes the possible values of a

32-bit signed integer. Since the upper bound ui,2 can be no greater than 231 − 1,

and since the lower bound lm,2 can be no less than −231, the above constraints

collapse to:

li,3 = max(li,2, lm,2) ∧ ui,3 = ui,2

lm,3 = lm,2 ∧ um,3 = min(um,2, ui,2)

5.5 Solving Minimum and Maximum Constraints

The min and max terms in the initial optimisation problem are non-convex, yet

convexity is a prerequisite of classical linear programming. It is, however, possible

to solve the non-linear constraint system through repeated linear programming.

This strategy is accompanied by heuristics to improve solving performance. In

this section, the solving strategy is described in detail.

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 97

5.5.1 Constraint Decomposition

The first stage in solving the non-linear constraint system involves decomposing

the min and max constraints using the following equivalences:

x = min(y, z) ≡ (x ≤ y) ∧ (x ≤ z) ∧ (x = y ∨ x = z)

x = max(y, z) ≡ (x ≥ y) ∧ (x ≥ z) ∧ (x = y ∨ x = z)

It should be clear that these equivalences are correct. Take the definition of min

for example. The result should be less than or equal to both of the operands, but

it must equal one of them. A similar argument holds for max.

After the decomposition of the min and max terms, the constraint system

is partitioned between a set, L, of linear constraints and a vector, C, of com-

plementary constraints. As the name might suggest, the complementary con-

straints are disjunctive. Specifically a complementary constraint takes the form

(a = b)∨(c = d), where each of a, b, c and d are linear terms involving optimisation

variables and constants. The remaining linear constraints are added to L.

Example 4 (Constraint decomposition). The constraint um,3 = min(ui,2, um,2)

is decomposed into the linear system L = {um,3 ≤ ui,2, um,3 ≤ um,2} and the

complementary constraints C = 〈(um,3 = ui,2 ∨ um,3 = um,2)〉.

The decomposed constraints for the worked example are as follows. L is a set

containing the following linear constraints:

li,1 = −232 ui,1 = 231 − 1

li,2? = 10 ui,2? = 10

li,2 ≤ li,2? li,2 ≤ li,4 ui,2 ≥ ui,2? ui,2 ≥ ui,4

li,3 ≥ li,2 li,3 ≥ lm,2 ui,3 = ui,2

li,4 = li,3 ui,4 = ui,3

li,5 = li,2 ui,5 ≤ ui,2 ui,5 ≤ um,2 − 1

lm,1 = 5 um,1 = 20

lm,2? = lm,1 um,2? = um,1

lm,2 ≤ lm,2? lm,2 ≤ lm,4 um,2 ≥ um,2? um,2 ≥ um,4

lm,3 = lm,2 um,3 ≤ ui,2 um,3 ≤ um,2

lm,4 ≤ lm,3 + 1 lm,4 ≤ 231 − 1 um,4 ≤ um,3 + 1 um,4 ≤ 231 − 1

lm,5 ≥ lm,2 lm,5 ≥ li,2 + 1 um,5 = um,2

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 98

and C is a vector containing the following complementary constraints:

(li,2 = li,2? ∨ li,2 = li,4) (ui,2 = ui,2? ∨ ui,2 = ui,4)

(li,3 = li,2 ∨ li,3 = lm,2) (ui,5 = ui,2 ∨ ui,5 = um,2 − 1)

(lm,2 = lm,2? ∨ lm,2 = lm,4) (um,2 = um,2? ∨ um,2 = um,4)

(um,3 = ui,2 ∨ um,3 = um,2) (lm,4 = lm,3 + 1 ∨ lm,4 = 231 − 1)

(um,4 = um,3 + 1 ∨ um,4 = 231 − 1) (lm,5 = lm,2 ∨ lm,5 = li,2 + 1)

5.5.2 Constraint Solving

Although the non-linear disjunctions of C disallow conventional linear program-

ming solvers from being directly applied, the optimal solution can be found

through repeated solving of smaller linear constraint systems. To see this, ob-

serve that a complementary constraint (a = b) ∨ (c = d) has one of two states,

according to whether the first or the second equality holds. Therefore there are

2|C| possible combinations under which the disjunctions of C may be satisfied.

The optimal solution to the non-linear constraint system could, in principle, be

found through solving 2|C| smaller linear programs, each consisting of the linear

constraints of L, augmented with one combination under which C may be satis-

fied. By this method, solving the worked example would amount to solving 1024

LPs:

minimise(F) s.t. L ∧C l
1 ∧C l

2 ∧C l
3 ∧C l

4 ∧C l
5 ∧C l

6 ∧C l
7 ∧C l

8 ∧C l
9 ∧C l

10

minimise(F) s.t. L ∧C l
1 ∧C l

2 ∧C l
3 ∧C l

4 ∧C l
5 ∧C l

6 ∧C l
7 ∧C l

8 ∧C l
9 ∧Cr

10

minimise(F) s.t. L ∧C l
1 ∧C l

2 ∧C l
3 ∧C l

4 ∧C l
5 ∧C l

6 ∧C l
7 ∧C l

8 ∧Cr
9 ∧C l

10

minimise(F) s.t. L ∧C l
1 ∧C l

2 ∧C l
3 ∧C l

4 ∧C l
5 ∧C l

6 ∧C l
7 ∧C l

8 ∧Cr
9 ∧Cr

10
...

minimise(F) s.t. L ∧Cr
1 ∧Cr

2 ∧Cr
3 ∧Cr

4 ∧Cr
5 ∧Cr

6 ∧Cr
7 ∧Cr

8 ∧Cr
9 ∧C l

10

minimise(F) s.t. L ∧Cr
1 ∧Cr

2 ∧Cr
3 ∧Cr

4 ∧Cr
5 ∧Cr

6 ∧Cr
7 ∧Cr

8 ∧Cr
9 ∧Cr

10

where F is the objective function finding the tightest bounds and where C l
i and Cr

i

refer to the left and right equality of the ith complementary constraint. The right

hand equalities are underlined in the above to aid reader comprehension. Each

of the above linear programs could be solved independently to obtain a vector of

solutions. A solution is either:

• A pair 〈o, n〉, where o is the objective function value and n is a mapping

from interval bounds to their assignments.

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 99

• or ⊥, meaning that the LP was Infeasible.

The solution si 6= ⊥ whose cost function gives the overall least value would be

selected, as this corresponds to the optimal solution of the overarching non-linear

constraint system. However, since the number of LPs that must be solved by this

method grows exponentially with the number of complementary constraints in C,

an alternative strategy is suggested.

The search space can be thought of as a binary decision tree, where the edges

represent the selection of either the left or right equality of a complementary con-

straint. Under this model, each path from the root node to a leaf node represents

a sequence of decisions which may satisfy the complementary constraints. The

proposed method walks the tree in a depth first fashion, at each node solving a

linear relaxation. The boilerplate of the algorithm is shown in Algorithm 6.

Before the algorithm commences, L is augmented with constraints to ensure

that each interval bound is within the feasible integer range. This is required

because the complementary constraints normally provide the necessary bounding.

By relaxing these constraints, bounding is no longer guaranteed. In the case of the

worked example, each interval bound, bi ∈ {li,1, ui,1, lm,1, um,1, . . .}, is limited to

the range of signed 32-bit integers such that −231 ≤ bi ≤ 231−1. This augmented

system will henceforth be denoted L̄.

The search starts at the root node of the tree with τ =True. Each node of

the tree equates to a linear program, L̄ ∧ τ , which is tested for satisfiability with

a solver. τ is the conjunction of equalities selected so far from C (as illustrated

in Figure 25). If L̄ ∧ τ is Infeasible, then there is no solution for this choice

of τ . Furthermore, the search down the current branch of the tree is aborted,

therefore pruning the search space. Searching deeper would only augment τ with

additional equalities from C, so if L̄∧ τ is already Infeasible, then constraining

it further will make no difference. If, on the other hand, L̄ ∧ τ is satisfiable,

then another equality is selected from C from a disjunction that has not already

been considered. This is the role of ChooseNextDecision. The selection of

a new equality corresponds to the transition from the current node to another,

one level deeper in the tree. If exactly one equality has been selected from each

disjunction of C and L̄∧τ is still feasible (i.e. the LP at a leaf node is satisfiable),

then a solution is recorded. The search continues exploring the tree in this way

until the search space is exhausted, at which point the solution with the least

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 100

objective function value is reported as the overall minimum. The assignment to

the interval bounds in the least solution characterises the least-fixpoint of the

abstract semantics.

Algorithm 6 Binary search algorithm.

1: function BinSearch(L̄, F , C, τ)
2: r ← MinimizeLp(F , L̄ ∧ τ)
3: if ¬ Sat(r) then
4: return [] . No solutions here, prune.
5: else if AllDecisionsMade(C, τ) then
6: return [(r, τ)] . Found a leaf with a solution.
7: end if
8: (e1 ∨ e2)←ChooseNextDecision(C, r, τ)
9: sl ← BinSearch(L̄, F , C, τ ∧ e1)

10: sr ← BinSearch(L̄, F , C, τ ∧ e2)
11: return Append(sl, sr)
12: end function

The benefit of this strategy is that if inconsistency is detected when τ contains

relatively few equalities from C, then many branches through the search space

can be dismissed simultaneously. The effectiveness of this pruning strategy is

dependent upon the ordering of decisions, and in particular the equalities that are

selected from C. For the search to be effective, inconsistencies need to be found

early in the search, at a shallow depth in the tree. The earlier inconsistencies are

found, the earlier pruning can occur, and therefore the more potential solutions can

be ruled out at once. If, on the other hand, an inconsistency is found later, then it

is likely to be duplicated down alternative paths, nullifying the effect of pruning.

Like many combinatoric search problems, the worst case complexity is high; the

worst case number of linear programs is 2|C|+1 − 1. In practice performance can

be significantly improved with the use of heuristics.

5.5.3 Heuristics

In order to improve upon the worst case complexity of the search space, the

following heuristics are deployed:

H1: Prune Inconsistencies Early. This heuristic suggests which disjunction

Cn ∈ C is a good candidate from which an equality should be selected. Suppose

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 101

C7

C3

C9

um,3 = ui,2

li,3 = li,2

um,4 = um,3 + 1

um,3 = um,2

li,3 = lm,2

um,4 = 231 − 1

L̄x Relaxation (L̄ ∧ τ)

1 L̄

2 L̄ ∧ (um,3 = ui,2)

3 L̄ ∧ (um,3 = ui,2) ∧ (li,3 = li,2)
...

...

Figure 25: First three linear relaxations of the worked example program.

solving L̄∧τ returns a solution for which (um,3 = −231)∧(ui,2 = 10)∧(um,2 = 20).

Observe that the disjunction C7 = (um,3 = ui,2∨um,3 = um,2) is unsatisfiable under

this assignment. Then the heuristic suggests that τ should next be extended with

an equality from C7. The intuition behind this selection strategy is that if C7

is unsatisfiable for the current solution to L̄ ∧ τ , then extending τ with one of

the equalities of C7 is likely to detect an inconsistency at the next node, thereby

pruning the search space earlier, rather than later. If no complementary constraint

can be found which is unsatisfied by the current solution to L̄∧τ , then an arbitrary

Cn ∈ C is chosen from which the next equality is selected. The selected Cn is

literally chosen at random, thus introducing non-determinism into the algorithm.

The proposed definition of ChooseNextDecision, which implements H1, is

shown in Algorithm 7.

Algorithm 7 Heuristic 1

1: function ChooseNextDecision(C, r, τ)
2: v ← GetViolatedCCs(C, τ)
3: if |v| > 0 then
4: let n ∈ v
5: else
6: n← ChooseArbitraryNextDecision(C, r)
7: end if
8: return n
9: end function

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 102

H2: Block Weak and Duplicate Solutions. A solution is found once an

equality is selected from each disjunction of C such that L̄∧ τ remains satisfiable.

In other words, a solution is found when the LP at a leaf node of the tree is

satisfiable. Note that the first solution found may not be the minimal solution.

There may be many solutions which, whilst they satisfy the min/max constraints,

yield imprecise intervals compared to those of the least solution. For this reason,

ideally the search space should be exhausted, although the search could be stopped

early and the current best solution can be taken as a post-fixpoint. It is also

possible for both equalities of a complementary constraint to evaluate true, e.g.

(li,3 = li,2∨ li,3 = lm,2) where li,2 = li,3 = lm,2 = 1. In this case ineffectual decisions

exist in the search space, meaning that duplicate solutions must also exist.

There is no value in finding a duplicate solution or a solution which is weaker

than another already found, so the addition of an extra linear constraint is pro-

posed. The extra constraint ensures that any solution that is subsequently found is

strictly better than any solution already known. Suppose that, during the solving

of the worked example, a solution is found whose objective function value is omin.

A constraint is added which literally asserts that the value of the objective function

is strictly less than omin. Therefore, subsequent linear programs are solved under

the additional constraint :
∑5

j=1(ui,j − li,j) +
∑5

j=1(um,j − lm,j) < omin. Through

this construction, only solutions yielding a strictly smaller objective are feasible.

This has the effect of further pruning the search space and in turn minimising the

number of LPs that must be solved overall.

5.6 Experimental Results

Tooling was developed which, given a control flow graph and a description of

CFG edge operations, generates L̄ and C, before proceeding with the binary

search as described in the previous section. Linear programs were solved by the

open-source LpSolve solver interfaced using Python language bindings. The

individual search heuristics, H1 and H2, may be switched on and off, allowing

performance comparisons to be drawn under different heuristics configurations.

Evaluation of the complementary constraints (for heuristic 1) was performed by

SymPy, a computer algebra library for Python. Experiments were run on a 3GHz

64-bit Intel machine with 4GB of RAM and running OpenBSD.

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 103

Interval
m1 ∈

[2, 2] [63, 71] [5, 20]
m2∗ [2, 2] [63, 71] [5, 20]
m2 [2, 11] [63, 71] [5, 20]
m3 [2, 10] [63, 10] [5, 10]
m4 [3, 11] [64, 11] [6, 11]
m5 [11, 11] [63, 71] [11, 20]
i1 [0, 255] [0, 255] [0, 255]
i2∗ [10, 10] [10, 10] [10, 10]
i2 [10, 10] [10, 10] [10, 10]
i3 [10, 10] [63, 10] [10, 10]
i4 [10, 10] [63, 10] [10, 10]
i5 [10, 10] [10, 10] [10, 10]

(a) Intervals determined.

m1 ∈ H1 H2 Mean #LPs Mean Time (s)

[2, 2]

7 7 208 0.2
3 7 183 0.9
7 3 152 0.1
3 3 38 0.2

[63, 71]

7 7 200 0.2
3 7 125 0.6
7 3 105 0.1
3 3 45 0.2

[5, 20]

7 7 207 0.2
3 7 211 1.0
7 3 143 0.1
3 3 44 0.2

(b) Avg. # of LPs required, Avg. times.

Figure 26: Experimental results for the worked example (Listing 5.1).

The tables in Figure 26 show some experimental results for the worked exam-

ple (Listing 5.1) under different initial values of m1 and under different heuristics

configurations. Because the algorithm is non-deterministic, each experiment con-

figuration was run 10 times and averages were taken. The tables show the intervals

inferred, the mean number of linear programs required (out of a possible worst case

number of 210+1− 1 = 2047) to find the best solution and (for indicative purposes

only) the average amount of time spent finding the solution (in seconds). The

intervals of the best solution are precise and, in all cases, the heuristics reduced

the number of LPs required to find the best solution. Further, when m1 ∈ [63, 71],

the loop body is not entered and this is reflected in the results by the empty inter-

vals at program points 3 and 4. Interestingly, run-times appear to be longer when

heuristic 1 is enabled. Profiling revealed that the evaluation of complementary

constraints (GetViolatedCCs) accounts for a large portion of solving time for

this small example. This can probably be attributed to the symbolic evaluation of

equalities in an interpreted runtime system (i.e. Python). This subsystem could

doubtlessly be optimised, but this is out of the scope of this chapter.

A second program was analysed, this time at the binary level. Listing 5.2

shows the disassembly of a defective implementation of memcpy(3) for the x86-64

architecture. As operands, the function takes a pointer to a destination buffer

(rdi), a pointer to a source buffer (rsi) and a length argument (rdx). The

r15 register is used as both a loop counter and as an index into the source and

destination buffers. The program is defective because it always copies one too

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 104

rdx ∈ r151 H1 H2 MLP MT

[8, 8] [0, 8]

7 7 25143 75
3 7 18596 178
7 3 11940 45
3 3 69 1

[8, 4096] [0, 4096]

7 7 31045 116
3 7 18963 198
7 3 8989 45
3 3 62 1

[31, 66] [0, 66]

7 7 28639 107
3 7 18963 194
7 3 13885 55
3 3 68 1

(a) Second set of experiments.

rdi ∈ rax2 H1 H2 MLP MT

[8, 8] [1, 8]

7 7 36621 219
3 7 20342 302
7 3 7891 34
3 3 85 1

[7, 13] [1, 13]

7 7 35856 151
3 7 19977 258
7 3 8701 37
3 3 99 1

[4, 128] [1, 128]

7 7 40352 166
7 3 19696 252
3 7 7948 34
3 3 105 1

(b) Third set of experiments.

Figure 27: Results for the second and third experiments (MLP is the mean number
of linear programs required and MT is the mean time in seconds).

many bytes, thus overshooting the destination buffer. The jg instruction on the

third line should have been a jge instruction.

Let r151 ∈ [lr15,1, ur15,1] be the interval representing r15 at the program point

marked p1, where bytes are written into the destination buffer. In order to model

the conditional behaviours of binary programs, high-level predicates must be ex-

tracted from sequences of assembler instructions. Typically two instructions are

involved; one which defines the CPU status flags and another which reads the

status flags [7]. For example, 〈cmp r15, rdx; jg return〉 causes a control flow

despatch if r15 > rdx. This inference is performed statically prior to constraint

generation.

memcpy: xor r15 , r15 # loop counter

loop: cmp r15 , rdx

jg return

mov byte ptr cl , [rsi+r15] # read out src

p1: mov byte ptr [rdi+r15], cl # write in dest

inc r15

jmp loop

return: mov rax , rdi # return ptr to dest

ret

Listing 5.2: A function to copy buffers.

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 105

Figure 27a shows the results of the analysis upon the memcpy(3) implemen-

tation. If a buffer size of between 8 and 4096 is passed to this function, then

the analysis indeed infers r151 ∈ [0, 4096]. This would suggest that one byte is

potentially written outside of the allocated buffer. Again, the number of LPs the

analysis is required to solve is improved through the use of heuristics. Evaluation

of complementary constraints is especially expensive when heuristic 1 alone is en-

abled, but the overall time spent searching is vastly improved through the use

of heuristics 1 and 2 combined. This experiment utilises 18 complementary con-

straints, so the theoretical worst case number of LPs required is 218+1−1 = 524287.

Listing 5.3 shows an algorithm to byte-swap 16-bit words in a memory buffer.

As operands, the function takes a buffer length (rdi) and a pointer to a buffer to

swap (rsi). The register rax is being used as an index into the buffer pointed to by

rsi. The program points of interest are marked p1 and p2; these points are where

the buffer contents are written. Let rax1 ∈ [lrax,1, urax,1] and rax2 ∈ [lrax,2, urax,2]

be the intervals of rax at p1 and p2 respectively. The results of the analysis of

this program (Figure 27b) highlight an interesting deficiency in the analysis. If

the function is called with an odd buffer size argument, then the function indeed

writes one byte outside its allocated buffer, this is reflected by the experimental

results. Yet, if a buffer size argument of 8 is passed to the analysis, then it infers

rax2 ∈ [1, 8]. This would suggest that a byte was written outside of the allocated

buffer, however, in reality this is untrue. Due to the approximation introduced

by the interval domain, the analysis is unable to take into account the strided

nature of the loop counter. As a consequence the analysis over-approximates the

upper bound of rax upon entry to the loop. Nevertheless, the solution is sound

(it safely over-approximates all possible register values). Further, the solution

is found quickly and in a fraction of the worst case number of linear programs

(222+1 − 1 = 8388607).

5.6.1 Comparison with Kleene Iteration

To reflect further upon the feasibility of the analysis described in this chapter,

it may be beneficial to compare its performance with that of traditional Kleene

iteration. Although such a comparison is not offered here, it should be noted that

making this comparison may not be as straightforward as one might expect.

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 106

endswap: xor r15 , r15 # loop counter

loop: cmp r15 , rdi

jge return

mov rax , r15 # rax is used as a write index

mov byte ptr dl , [rsi+r15]

inc r15

mov byte ptr cl , [rsi+r15]

inc r15

p1: mov byte ptr [rsi+rax], cl

inc rax

p2: mov byte ptr [rsi+rax], dl

jmp loop

return: ret

Listing 5.3: A 16-bit byte swap.

Perhaps the most obvious approach would be to compare how long it takes

each method to find a least-fixpoint solution. The linear programming method

guarantees that the solution found is the least-fixpoint, and the same can be said

for Kleene iteration just so long as no fixpoint acceleration technique is used.

However, this raises an important issue; that typically when using Kleene itera-

tion, fixpoint acceleration techniques are often required for a tractable analysis.

Furthermore, by deploying fixpoint acceleration, the precision of the analysis may

be compromised (a post-fixpoint may be found).

An approach which may be more insightful therefore, may be to compare

the new approach with several runs of Kleene iteration with varying widening

thresholds. Inevitably, a range of post-fixpoint solutions would be found. To rank

the quality of each of these solutions, one could devise a fitness function which

takes into account: a) the precision of the solution (how far it deviates from the

least-fixpoint determined by linear programming), and b) the time taken to find

the solution. Of course, this then raises the question of what a suitable fitness

function could be.

5.7 Discussion

The analysis presented in this paper was mostly inspired by the pioneering work

by Rugina et al. [99]. The extension to Rugina’s work diverges in some aspects in

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 107

response to shortcomings that are not mentioned in the literature. In this section,

a brief discussion of these shortcomings is offered.

5.7.1 Conditional Semantics

It would appear that Rugina’s branching semantics are unable to model a class

of loop constructs correctly. One such example is the program:

B1: int i = 10;

B2: while (i >= m)

B3: m := m + 1;

endwhile

Listing 5.4: A program which may not be analysed by Rugina’s method.

Following Rugina’s constraint generation scheme, the program is reduced to

the following constraint system, which is infeasible:

li,2 ≤ 10 ∧ 10 ≤ ui,2 ∧ lm,2 ≤ lm,1 ∧ um,1 ≤ um,2 ∧
li,3 ≤ lm,2 ∧ ui,2 ≤ ui,3 ∧ lm,3 ≤ lm,2 ∧ um,2 ≤ um,3 ∧
li,2 ≤ li,3 ∧ ui,3 ≤ ui,2 ∧ lm,2 ≤ lm,3 + 1 ∧ um,3 + 1 ≤ um,2

The constraints set in bold are inconsistent. Since the constraint system is infeasi-

ble, no interval bounds may be inferred. This means that the results of the analysis

are inconclusive. The construction using min and max constraints remedies this

shortcoming, meaning that the analysis always yields conclusive results.

5.7.2 Junk propagation

In both the method proposed in this chapter and in Rugina’s analysis, unreachable

code manifests itself as empty intervals (i.e. intervals of the form [l, u], where

l > u). The empty interval in the abstract domain corresponds to the empty set

in the concrete domain. Consider the following program snippet, in which B3 is

unreachable:

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 108

B1: int i = 12;

B2: while (i <= 10)

B3: i := i + 1;

endwhile

Listing 5.5: Program demonstrating junk propogation.

Analysis of this program via Rugina’s method, infers the following intervals:

i2 ∈ [12, 15], i3 ∈ [12, 10]. The interval at i3 is empty, correctly indicating that

this program point is unreachable. Unfortunately, the loop’s back-arc propagates

bounding information from B3 back to B2, thereby compromising the precision of

the upper bound of i2. We refer to this phenomenon as “junk propagation”. As

far as is known at the time of writing, junk propagation is not mentioned in the

literature.

The method proposed earlier in this chapter overcomes imprecisions incurred

through junk propagation by treating the false branch of the loop check (or of

any conditional for that matter) as a conditional whose predicate is the negation

of that of the true branch. For the above counter-example, a loop exit block, B4,

would be introduced which is connected to B2 by a conditional edge asserting

that i > 11. Through this construction, the precision of the upper bound of i2 is

retained.

5.8 Chapter Summary

The method presented in this chapter has shown how range analysis can be com-

puted, not as the solution to a system of recursive equations, but as the solution

of a system of constraints over min and max expressions. Such constraints can

be reduced to a system of linear constraints, augmented with complementary con-

straints, and thus solved by repeated linear programming. The method can be

implemented with an off-the-shelf linear programming package, which can be used

as a black-box. Furthermore, the number of calls to the solver can be reduced

by using search heuristics. The result is an analysis that does not depend on

classical fixpoint acceleration methods such as widening, since the least-fixpoint

is found directly. It was shown that by using the range information inferred by

CHAPTER 5. RANGE ANALYSIS USING LINEAR PROGRAMMING 109

the analysis, it is possible to identify possible buffer overflow vulnerabilities in bi-

naries. Further, the experimental results suggest that the analysis would perform

adequately for deployment in, for example, an automated disassembler.

The approach is limited by the fact that it cannot take into account integer

overflow scenarios. Integer overflows are often the source of subtle software defi-

ciencies, so it is important that these scenarios are taken into consideration. The

saturating addition semantics that were shown earlier in this chapter are, strictly

speaking, unsound (for general purpose CPU architectures). Unfortunately, it is

not trivial to model the overflow scenarios in a linear program because to do so

requires modular arithmetic. By nature, modular arithmetic is non-linear. The

following chapter shows that, whilst it is difficult to faithfully approximate these

modulo behaviours with LP, it is not impossible with a mixed-integer linear pro-

gram (MILP).

On a related note, it may be possible to solve non-linear constraint systems

implementing min and max constraints with policy iteration. By such a method,

the choice of the left or right inequality from a complementary constraint could

form the basis for policy selection. Such an approach would, of course, re-introduce

the need for an iteration strategy and widening, but may yield valuable insights

nevertheless. See Section 7.4 for a discussion on policy iteration.

Chapter 6

Modelling Integer Overflow with

MILP

6.1 Introduction

In the last chapter, a method was presented that allows range analysis to be for-

mulated as a series of linear optimisation problems. The method shows promise;

it is conceptually simple and experimental results suggest that, in terms of per-

formance, it would be feasible for industrial application.

Yet, in its current state, the method fails to model integer wrapping scenarios,

i.e. integer overflow and underflow. For example, consider the x86-64 instruction

〈add rax, c〉, where c is assumed to be a positive integer constant. The instruc-

tion simply adds c to the current value held in rax, storing the result back in rax.

The rax register itself is a general purpose 64-bit register, meaning that it can

express unsigned values between 0 and 264 − 1, or it may express signed values

between −263 and 263 − 1. Actually, registers have no notion of signedness and

merely store bytes that may be interpreted in either way. An overflow (or under-

flow) occurs when an arithmetic operation causes a register value to fall outside

of what is expressible. In the case of the above example, if rax is interpreted

as unsigned, then an overflow occurs when the result of adding c to rax exceeds

264 − 1. Similarly, for a signed interpretation of rax, if rax + c > 263 − 1, then

an overflow occurs. Note that, on most CPUs, when computing the result of the

addition, the add instruction is oblivious to the two numeric interpretations of

110

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 111

rax. The two’s complement encoding means that the result is correct for both

signed and unsigned interpretations.

Exactly what happens when an integer overflow occurs is defined by the un-

derlying CPU architecture, however it is usually the case that the result literally

wraps, as though it were a modulo system (whilst this is the norm for general

purpose CPU architectures, note that other overflow models do exist, such as sat-

urating arithmetic, as used in digital signal processing [73]). For example, if rax

holds the unsigned number 264−1, and then the CPU executes 〈add rax, 1〉, the

resulting value of rax is 0. Similarly, the signed value 263− 1 would wrap to −263

when incremented. This poses a problem for the method presented in the pre-

vious chapter. Wrapping means that arithmetic operations cannot be expressed

as a convex linear function and thus cannot be encoded directly as linear con-

straints. Furthermore, it is not clear how wrapping operations can be expressed

by min/max constraints, meaning that the method from the previous chapter does

not help to overcome this problem. Observe however, that the potential outcomes

of the operation can, in fact, be described by a piecewise linear function:

addu64(rax, c) =

rax+ c if rax+ c ≤ 264−1

rax+ c− 264 otherwise

The method described in this chapter shows that it is possible to model func-

tions of this form as a mixed-integer linear program (MILP). The approach relies

on the introduction of Boolean decision variables to encode the problem. The

use of decision variables was inspired by Goubault et al. [58], who use decision

variables to encode reachability in range analyses. Unlike their approach, how-

ever, the method described here emphasises the ability to model integer wrapping

scenarios with as little precision loss as possible. To summarise, the contributions

of this chapter are as follows:

• An extension to the method presented in the previous chapter is shown,

which uses Boolean decision variables to model the effects of integer wrap-

ping in the interval analysis.

• It is shown that control flow reachability and min/max constraints can be

recast using decision variables too, thus sidestepping the need for repeated

solving of linear programs.

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 112

• It is shown that by inferring register signedness a priori, the number of op-

timisation variables required can be reduced to improve performance. Ex-

perimental results are shown to support this claim.

The rest of this chapter is arranged as follows. Section 6.2 shows a worked

example demonstrating the fundamental analysis, then Section 6.3 presents the

technical aspects underpinning the modelling of integer wraps. Section 6.4 demon-

strates how to model control flow and reachability using decision variables, then

Section 6.5 shows how to extend the analysis to efficiently model mixed signedness.

In Section 6.6 the performance of the analysis is evaluated, before Section 6.7 ends

the chapter with some concluding remarks.

6.2 Worked Example

In this section, an overview of the proposed analysis is presented through the use

of a worked example. In later sections, the more technical aspects of the analysis

are described.

6.2.1 Collecting Semantics

Figure 28 shows the control flow graph (CFG) and the disassembly of an x86-

64 function which shall serve as a worked example. The function dynamically

allocates a memory buffer for storage of a variable-size UTF-32 string and returns

a pointer to the buffer. The function accepts, as its sole argument, the number of

characters for which space should be allocated. This argument is passed through

the 64-bit rdi register. Since UTF-32 characters are of fixed size (four bytes), the

function computes the size of the storage buffer by multiplying rdi by four and

then adding a further four to accommodate a UTF-32 null sentinel. Once the

buffer size has been computed, the buffer is allocated with a call to the system’s

memory allocator, malloc(3), and the resulting pointer is checked in case of an

allocation failure. If the operating system was unable to allocate the requested

number of bytes, then the result of this function call is a null pointer, which is

in turn passed back to the callee. Assuming that this is not the case and that

malloc(3) succeeds, the remainder of the function initialises the allocated buffer

by filling it with zeroes. This is accomplished with a loop that writes double-word

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 113

B1
p0: mov r12, rdi
p1: imul rdi, rdi, 0x4
p2: add rdi, 0x4
p3: call malloc

B2
p4: cmp rax, 0x0
p5: ja p7

B3
p6: ret

false

B4
p7: mov rdi, 0x0

true

B5
p8: cmp rdi, r12
p9: jae p13

B6
p10: mov dword [rax+rdi*4], 0x0
p11: add rdi, 0x1
p12: jmp p8

false

B7
p13: ret

true

Figure 28: Allocating a UTF-32 string buffer.

zeroes (four 0x00 bytes) into each UTF-32 character slot in the buffer. Finally, a

pointer to the allocated buffer is returned to the callee. For now, assume that all

registers are to be interpreted as unsigned integers. The program uses only 64-bit

registers, meaning that each register value may be between 0 and 264−1. Later, a

type inference is presented to improve the handling of mixed sign interpretations.

The analysis starts by identifying code blocks. A block is a straight line se-

quence of instructions terminated by either a control flow despatch (e.g. jmp or

ret), or an incoming control flow edge. In Figure 28 the blocks are annotated

B1, . . . , B7. The program instructions themselves are labeled p0, . . . , p13. The aim

of the analysis is to compute a range of values for each register at each program

point without actually executing any code. Following the standard procedure

(outlined in Chapter 2), a concrete domain and collecting semantics is defined.

The concrete domain is defined analogously to before in Chapter 5. Namely,

a single possible state is a tuple drawn from Zn, where Z = {0, . . . , 264 − 1} and

n is the number of registers to model. For this particular example, a single state

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 114

S1 = {〈rdi, rdi, rax〉 | 〈rdi, r12, rax〉 ∈ S0}
S2 = {〈4 · rdi mod 264, r12, rax〉 | 〈rdi, r12, rax〉 ∈ S1}
S3 = {〈rdi+ 4 mod 264, r12, rax〉 | 〈rdi, r12, rax〉 ∈ S2}
S4 = S3:e S5 = S4

S6 = S5:f S7 = S5:t

S8 = S7:e ∪ S12:e S9 = S8

S10 = S9:f S11 = S10

S12 = {〈rdi+ 1 mod 264, r12, rax〉 | 〈rdi, r12, rax〉 ∈ S11}
S13 = S9:t

S3:e = {〈rdi, r12, rax′〉 | 〈rdi, r12, rax〉 ∈ S3 ∧ 0 ≤ rax′ ≤ 264−1}
S5:t = {〈rdi, r12, rax〉 | 〈rdi, r12, rax〉 ∈ S5 ∧ rax > 0}
S5:f = {〈rdi, r12, rax〉 | 〈rdi, r12, rax〉 ∈ S5 ∧ rax ≤ 0}
S6:e = S6

S7:e = {〈0, r12, rax〉 | 〈rdi, r12, rax〉 ∈ S7}
S9:t = {〈rdi, r12, rax〉 | 〈rdi, r12, rax〉 ∈ S9 ∧ rdi ≥ r12}
S9:f = {〈rdi, r12, rax〉 | 〈rdi, r12, rax〉 ∈ S9 ∧ rdi < r12}
S12:e = S12 S13:e = S13

Figure 29: Collecting semantics.

must express the values of three registers, R = {rdi, r12, rax}, thus n = 3 and a

state will be represented by a 3-tuple. For a given program point, pk, the set of

all possible states, Sk, is an element drawn from ℘(Zn).

To aid the composition of block semantics, additional sets are introduced to

express the possible register values at the exits of each block. Observe that each

block has either one outgoing edge (e.g. B1), or two outgoing edges (e.g. B2). For

a block with a single outgoing edge, a set Sk:e describes the set of possible states

upon exit of the block, i.e. immediately after pk. If, on the other hand, a block

is terminated by a conditional jump, it has two outgoing edges and therefore two

sets, Sk:t and Sk:f , are introduced to represent states in the true and false arms of

the conditional respectively. Figure 29 gives recursive definitions of these sets.

For now the analysis is intra-procedural, meaning that the analysis makes

no attempt to follow call instructions. As a consequence, the return values of

function calls cannot be known. In the worked example, the call to malloc(3)

will return a pointer value in rax. Therefore, rax is handled conservatively in S3:e,

assuming that it may take any value. It is also assumed that functions correctly

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 115

implement callee-save. Of course, there is no guarantee that this is the case and

indeed registers other than rax may be mutated. Recently, an analysis called

side-effect analysis has been proposed for addressing this very problem [46].

6.2.2 Abstract Semantics

Analogous to before in Chapter 5, abstraction amounts to representing each un-

signed 64-bit register at each program point as an element of the interval domain:

Duint
64 = {∅} ∪ {[l, u] | 0 ≤ l ≤ u ≤ 264 − 1}. This definition is lifted into n

dimensions so as to abstract each set Sk with an element drawn from (Duint
64)n

(a triple of intervals). The ordering, join, meet and domain correspondence are

defined similarly to as shown in the previous chapter. The abstract semantics are

then defined as shown in Figure 30.

S′1 = 〈rdi, rdi, rax〉 where 〈rdi, r12, rax〉 = S′0

S′2 =


〈I, r12, rax〉 if I v [0, 264 − 1]

〈[lrdi · 4− 264, urdi · 4− 264], r12, rax〉 if I v [264, 2 · (264)− 1]

〈>, r12, rax〉 otherwise

where 〈[lrdi, urdi], r12, rax〉 = S′1 and I = [4 · lrdi, 4 · urdi]

S′3 =


〈I, r12, rax〉 if I v [0, 264 − 1]

〈[lrdi + 4− 264, urdi + 4− 264], r12, rax〉 if I v [264, 2 · (264)− 1]

〈>, r12, rax〉 otherwise

where 〈[lrdi, urdi], r12, rax〉 = S′2 and I = [lrdi + 4, urdi + 4]
S′4 = S′3:e S′5 = S′4 S′6 = S′4:f
S′7 = S′4:t S′8 = S′7:e t S′12:e S′9 = S′8
S′10 = S′9:f t S′12:e S′11 = S′10

S′12 =


〈I, r12, rax〉 if I v [0, 264 − 1]

〈[lrdi + 1− 264, urdi + 1− 264], r12, rax〉 if I v [264, 2 · (264)− 1]

〈>, r12, rax〉 otherwise

where 〈[lrdi, urdi], r12, rax〉 = S′11 and I = [lrdi + 1, urdi + 1]
S′13 = S′9:t
S′3:e = 〈rdi, r12,>〉 where 〈rdi, r12, rax〉 = S′3
S′5:t = 〈rdi, r12, rax u [1, 264 − 1]〉 where 〈rdi, r12, rax〉 = S′5
S′5:f = 〈rdi, r12, rax u [0, 0]〉 where 〈rdi, r12, rax〉 = S′5
S′6:e = S′6
S′7:e = 〈[0, 0], r12, rax〉 where 〈rdi, r12, rax〉 = S′7
S′9:t = 〈rdi u [lr12, 2

64 − 1], [lr12, ur12], rax〉 where 〈rdi, [lr12, ur12], rax〉 = S′9
S′9:f = 〈rdi u [0, ur12], [lr12, ur12], rax〉 where 〈rdi, [lr12, ur12], rax〉 = S′9
S′12:e = S′12 S′13:e = S′13

Figure 30: Abstract semantics for the worked example.

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 116

Of particular interest are the definitions of S ′2, S ′3 and S ′12 (Figure 30), in

which the different modes of arithmetic are modelled. For example, the abstract

equation S ′3 models the three different overflow cases of the addition operation:

• The first case stipulates that if after adding 4 to the bounds of rdi, both

bounds are between 0 and 264−1, then the addition operates in exact mode

(with no overflow).

• The second stipulates that if after adding 4 to the bounds of rdi, both

bounds are between 264 and 2 ·264−1, then both bounds overflow as a result

of the addition. To compute the resulting bounds, 264 must be subtracted

from each bound.

• The third case accounts for situations where only the upper bound overflows.

In this case the addition is modelled conservatively.

Note that the semantics of the imul instruction as described by the equation
for S ′2 is a simplified approximation, since it is entirely possible for 4 · rdi to be
greater than 2 · (264)− 1. Further cases could be added to obtain higher precision
at the cost of a larger constraint system with more variables. For example, the
abstract semantics of S ′2 could be defined as:

S′2 =



〈I, r12, rax〉 if I v [0, 264 − 1]

〈[lrdi · 4− 264, urdi · 4− 264], r12, rax〉 if I v [264, 2 · (264)− 1]

〈[lrdi · 4− 2 · (264), urdi · 4− 2 · (264)], r12, rax〉 if I v [2 · (264), 3 · (264)− 1]

〈[lrdi · 4− 3 · (264), urdi · 4− 3 · (264)], r12, rax〉 if I v [3 · (264), 4 · (264)− 1]

.

〈>, r12, rax〉 otherwise

where 〈[lrdi, urdi], r12, rax〉 = S′1 and I = [4 · lrdi, 4 · urdi]

The addition of further cases, however, is not required for safety, as the final case

will catch any scenario not previously considered.

An initial state, S ′0, is then specified so as to mimic the passing of the function’s

operands. For example, the following would be used to pass the value (264− 4)/4

as the function’s sole operand:

S ′0 = 〈[(264 − 4)/4, (264 − 4)/4],>,>〉

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 117

As seen later, this particular input manifests an interesting behaviour. Here a

single value is passed as the rdi argument, but there is no reason why an interval

could not also be used if so desired. With this, the abstract semantics is complete.

6.2.3 Solving via Mathematical Optimisation

The system of abstract semantic equations has a best solution which corresponds

to the least-fixpoint. This solution can be found by traditional Kleene iteration.

As discussed in the previous chapter, solving by this method may suffer from long

convergence times and widening may be required, potentially incurring a further

loss of precision. Instead, the abstract semantics are encoded as a mixed-integer

linear program (MILP) and the least-fixpoint is found directly.

The decomposition of the abstract semantics into a MILP is not dissimilar

from the approach shown in the previous chapter. Again, for each interval, two

continuous optimisation variables are introduced, one for each bound. For exam-

ple, an abstract set S ′k is modelled using 2n optimisation variables, where n is

the number of registers to account for. In the case of the worked example, for

each program point, pk, six optimisation variables are used to represent interval

bounds: lrdi,k, urdi,k, lr12,k, ur12,k, lrax,k and urax,k. Each interval is constrained to

fall within the numeric range of its associated register. Since for the worked exam-

ple program, all registers are 64-bit and assumed to be interpreted unsigned, each

interval is constrained between 0 and 264 − 1. The variables are then constrained

to mirror the abstract semantics, for example, the abstract state S ′7:e is modelled

with the following linear constraints:

lrdi,7:e = 0 ∧ urdi,7:e = 0 ∧
lr12,7:e = lr12,7 ∧ ur12,7:e = ur12,7 ∧
lrax,7:e = lrax,7 ∧ urdi,7:e = urdi,7

This expresses the update to the interval bounds of rdi to [0, 0], but also asserts

that the other interval bounds do not change.

An objective function is used, which again, aims to find the tightest hyper-

rectangles that enclose all possible concrete states. The result is a MILP of the

form:

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 118

minimise
∑
k∈P

∑
r∈R

(ur,k − lr,k) s.t. C

where P is a set of program points, R is a set of registers and C is the constraint

system expressing the abstract semantics. The interval bounds of the optimal

solution to this problem characterises the least-fixpoint of the abstract semantics.
Solving the MILP generated from the worked example program gives a solution

that corresponds to the following interval bounds:

S′1 = 〈[(264 − 4)/4, (264 − 4)/4], [(264 − 4)/4, (264 − 4)/4],>〉
S′2 = 〈[264 − 4, 264 − 4], [(264 − 4)/4, (264 − 4)/4],>〉
S′3 = 〈[0, 0], [(264 − 4)/4, (264 − 4)/4],>〉
. . .

This would suggest that the first argument register, rdi, is zero immediately

prior to the call to malloc(3) at p3. Closer inspection shows that the addition

operation at p2 causes an integer overflow. Between p2 and p3 the abstraction

of rdi transitions from [264 − 4, 264 − 4] to [0, 0] as a result of adding four to

each of the interval bounds. As a consequence, when the program is executed

under this input, malloc(3) is asked to allocate 0 bytes. Oddly enough, most

implementations of malloc(3) do allow this, and a pointer is returned, but to a

block of memory which is access protected. Any read or write to this memory

will raise a memory exception. In fact, the memory write at p10 will cause such

an exception. Since the rdi component of S ′3 is a singleton, it is easy to see that

this is not a false positive. Hence, the analysis deduces that the code in question

is not fit for purpose. Indeed the code has a heap overflow vulnerability and will

crash under the assignment: S ′0 = 〈[(264 − 4)/4, (264 − 4)/4],>,>〉.

Encoding Differences

Whilst the method shares much of its infrastructure with the method described

in the previous chapter, some aspects differ substantially. Specifically:

• Instead of assuming that arithmetic saturates, decision variables are used

to model integer wrapping operations. This mechanism is described in Sec-

tion 6.3.

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 119

• Block reachability is expressed with decision variables, rather than by the

non-canonical empty interval [l, u], where l > u. Conditional constructs are

also realised through decision variables, instead of through min/max con-

straints. This means that the problem can be solved as a single MILP rather

than as many LP relaxations. These aspects are described in Section 6.4.

6.3 Piecewise Linear Functions in MILP

It is not obvious how the multi-modal wrapping cases used in S ′2, S
′
3 and S ′12 in

the worked example should be encoded as MILP constraints. In this section, a

general framework is presented, dubbed decide-and-impose, that leverages decision

variables to model piecewise linear functions within a MILP problem. As the name

may suggest, the framework is broken down into two distinct phases: the decision

phase and the impose phase. The update of rdi in S ′3 shall be used to exemplify

the framework.

6.3.1 The Decision Phase

Consider the abstract semantic equation for S ′3. The update of the interval bounds

for rdi can be thought of as a piecewise linear function, U : Duint
64 → Duint

64 , such

that [lrdi,3, urdi,3] = U([lrdi,2, urdi,2]):

U([lrdi,2, urdi,2]) =


[lrdi,2 + 4, urdi,2 + 4] if urdi,2 + 4 ≤ 264 − 1

[lrdi,2 + 4− 264, urdi,2 + 4− 264] if lrdi,2 + 4 ≥ 264

[0, 264 − 1] otherwise

The function takes advantage of the fact that, for any given interval [l, u] ∈ Duint
64 ,

it is assumed that l ≤ u. This assumption is safe because in the revised MILP en-

coding, the empty interval (and thus unreachable code) is expressed using decision

variables, instead of an interval [l, u] where l > u. This mechanism is described

later in Section 6.4.

It is straightforward to encode each of the three possible updates independently

as linear constraints, but a mechanism is required which can select which case

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 120

should apply. To this end, three decision variables δ1, δ2 and δ3 are introduced,

one for each case. The three cases are mutually exclusive but one case must apply,

hence δ1 + δ2 + δ3 = 1. The meaning of these variables is as follows:

(urdi,2 + 4 ≤ 264 − 1) ⇐⇒ δ1 = 1

(lrdi,2 + 4 ≥ 264) ⇐⇒ δ2 = 1

δ1 + δ2 + δ3 = 1

The third constraint can be used as is and the former two constraints are decom-

posed into MILP constraints using the following equivalence:

(x ≤ y ⇐⇒ δi = 1) ≡ (x ≤ y +M · (1− δi) ∧ x+M · δi ≥ y + 1)

where M is an integer constant that exceeds the maximum absolute difference

between x and y. For example, suppose the equivalence is used to encode (urdi,2 +

4 ≤ 264 − 1) ⇐⇒ δ1 = 1. Here x = urdi,2 + 4 taking a value between 4 and

264 − 1 + 4, and y is the constant 264 − 1. In this case, M should exceed 264 − 5

since this is the maximum absolute difference between x and y. The correctness

of the equivalence is shown by Corollary 3 on Page 177. The equivalence gives

the following constraints for the decision phase of the update of rdi in S ′3:

urdi,2 + 4 ≤ 264 − 1 +M · (1− δ1) ∧
urdi,2 + 4 +M · δ1 ≥ 264 ∧

264 ≤ lrdi,2 + 4 +M · (1− δ2) ∧
264 +M · δ2 ≥ lrdi,2 + 4 + 1 ∧
δ1 + δ2 + δ3 = 1

Note that it is acceptable to use a single instantiation of M just as long as M is

sufficiently large enough for each inequality in isolation.

6.3.2 The Impose Phase

Now that decision variables are constrained so as to indicate which update case

should apply, the impose phase can now be implemented. Based upon the truth

values of δ1, δ2 and δ3, constraints will be put in place to ensure that only the

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 121

correct update occurs. The impose phase must express the following:

(δ1 = 1) =⇒ lrdi,3 ≤ lrdi2 + 4 ∧
(δ1 = 1) =⇒ urdi,3 ≥ urdi2 + 4 ∧
(δ2 = 1) =⇒ lrdi,3 ≤ lrdi2 + 4− 264 ∧
(δ2 = 1) =⇒ urdi,3 ≥ urdi2 + 4− 264 ∧
(δ3 = 1) =⇒ lrdi,3 ≤ 0 ∧
(δ3 = 1) =⇒ urdi,3 ≥ 264 − 1

For example, suppose that the assignment to 〈δ1, δ2, δ3〉 is 〈0, 1, 0〉. This indi-

cates that the second case applies and that the interval bounds should be updated

to reflect the overflow condition. Under this assignment, the above constraint sys-

tem collapses to lrdi,3 ≤ lrdi2 +4−264 ∧ urdi,3 ≥ urdi2 +4−264. This is sufficient

to express the update of the interval bounds with the second case. At first the

constraints may seem too weak, however, recall that the objective function seeks

the tightest intervals. This means that the optimal solution to the above would

infer rdi3 = [lrdi2 +4−264, urdi2 +4−264]. To encode the bounds updates as MILP

constraints, the following equivalence is used:

(δi = 1) =⇒ (x ≤ y) ≡ x ≤ y +M · (1− δi)

Here M takes on the same role as before. The correctness of the equivalence is

shown by Corollary 4 on Page 178. This leads to the following constraints for the

impose phase of the update to rdi in S ′3:

lrdi,3 ≤ lrdi,2 + 4 +M · (1− δ1) ∧
urdi,2 + 4 ≤ urdi,3 +M · (1− δ1) ∧

lrdi,3 ≤ lrdi,2 + 4− 264 +M · (1− δ2) ∧
urdi,2 + 4− 264 ≤ urdi,3 +M · (1− δ2) ∧

lrdi,3 ≤ 0 +M · (1− δ3) ∧
264 − 1 ≤ urdi,3 +M · (1− δ3)

This concludes the encoding of the update to rdi in S ′3. Other abstract oper-

ations, even interval multiplication, can be encoded analogously.

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 122

6.4 Encoding Control Flow and Reachability

Recall that some other aspects of the analysis were reformulated so as to take ad-

vantage of decision variables. Namely, block reachability and control flow branches

are now modelled with decision variables. In this section, these mechanisms are

described.

6.4.1 Intra-Block Reachability

Each block Bi has an associated decision variable εi which indicates whether a

block is possibly reachable (εi = 1), or otherwise definitely unreachable (εi = 0).

Let these variables be referred to as block entry decisions. The block in which

execution starts is assumed to be reachable, thus in the worked example, ε1 = 1. A

block also has associated with it, at least one further decision variable to indicate

the reachability of each outgoing edge of the block. These decision variables are

referred to as block exit decisions. Each block’s entry and exit decisions must be

related.

When a block Bi has a single outgoing edge, then a single block exit decision

ηi:e is used to indicate whether execution may pass out of the block. In this case,

the analysis assumes that if execution could enter the block, then execution could

pass out of the block, i.e. εi = ηi:e. If, on the other hand, a block Bi is terminated

with a conditional jump, then two block exit decisions, ηi:t and ηi:f , are defined.

These decision variables indicate whether execution may pass out of the block by

taking the conditional jump (ηi:t = 1) or by the fall-through edge (ηi:f = 1). Note

that if ηi:t = 1, then it is quite possible that ηi:f = 1 also. Indeed, any combination

is possible.

In the case where a block, Bi, is terminated by a conditional jump, relating

the block entry decision to the block exit decisions is slightly more involved.

Before constraints may be generated, a high-level predicate must be extracted

from a backward slice. This procedure was described in Section 5.6. For example,

the instructions at p8 and p9 of B5 in the worked example program (Figure 28)

correspond to the high-level (unsigned) predicate rdi ≥ r12. Therefore, η5:t should

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 123

be expressed as follows:

lr12,9 ≤ urdi,9 ⇐⇒ δt = 1

η5:t = 1 ⇐⇒ δt = 1 ∧ ε5 = 1

The former of the two constraints uses a fresh decision variable, δt, to indicate

whether the branching predicate could be satisfied based upon the intervals prior

to the jump. This constraint can be decomposed into MILP constraints using

the equivalence shown in Section 6.3. The latter constraint then encapsulates the

exit decision. The true exit decision is only considered reachable if the branching

predicate is satisfied and B5 itself is reachable. This constraint is decomposed

into MILP constraints using the following equivalence:

((δm = 1 ∧ δn = 1) ⇐⇒ δi = 1) ≡ ((δm + δn − 2 · δi ≤ 1) ∧ (δm + δn − 2 · δi ≥ 0))

The correctness of the equivalence is shown in Theorem 13 on Page 178. The

following constraints are generated to relate the block entry and true block exit

decision of B5:

lr12,9 ≤ urdi,9 +M · (1− δt) ∧
lr12,9 +M · δt ≥ urdi,9 + 1 ∧

δt + ε5 − 2 · η5:t ≤ 1 ∧
δt + ε5 − 2 · η5:t ≥ 0

The reachability of the false branch is encoded analogously.

6.4.2 Inter-Block Reachability

The reachability flags have been related within each block, but now constraints

should be introduced to propagate reachability between the blocks. To propagate

these reachability decisions forward through the control flow of the program, the

block exit decisions of each block are related to the block entry decisions of suc-

cessor blocks. Specifically, a block is reachable if at least one of the exit decisions

of a direct predecessor block is reachable. For example, B5 is reachable if either

the exit decision of B4 is set (η4:e = 1) or if the exit decision of B6 is set (η6:e = 1).

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 124

Logically, this is expressed as:

(ε5 = 1) ⇐⇒ (η4:e = 1 ∨ η6:e = 1)

By applying De Morgan’s law, the above can be put in a form which can be

decomposed into MILP constraints, i.e. (ε5 = 0) ⇐⇒ (η4:e = 0 ∧ η6:e = 0)

is encoded into MILP constraints using the equivalence shown in the previous

section:
(1− η4:e) + (1− η6:e)− 2 · (1− ε5) ≤ 1 ∧
(1− η4:e) + (1− η6:e)− 2 · (1− ε5) ≥ 1

6.4.3 Interval Partitioning for Conditional Jumps

Recall that each outgoing edge of a block has an associated abstract state. In the

case where a block is terminated by a conditional jump, the intervals before the

jump must be partitioned between the states corresponding to the true and false

branches. For example, the abstract states S ′9:t and S ′9:f describe the intervals in

the true and false arm of the conditional at p9 respectively. Notice that these

intervals are based upon a partitioning, rdi ≥ r12 of S ′9. Again rdi ≥ r12 is the

predicate extracted from the reverse slice 〈cmp rdi, r12; jae ...〉. Constraints

must be introduced to reflect this partitioning.

Chapter 5 showed that it is possible to model this partitioning using min/max

constraints. The update to the interval bounds of rdi in the true branch of the

conditional at p9 can be expressed as follows:

lrdi,9:t = max(lrdi,9, lr12,9) ∧
urdi,9:t =urdi,9

The max constraint is of course non-convex. Rather than using a binary search,

as suggested in Chapter 5, this chapter proposes that min/max constraints be

encoded directly as MILP constraints through the use of decision variables. Notice

that the max constraint can be expressed as a piecewise linear function:

max(x, y) =

x iff x ≤ y

y otherwise

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 125

Therefore there is no need to perform a binary search, since the interval partition-

ing can be encoded into MILP constraints using the decide-and-impose framework

described in Section 6.3. The interval bounds for the false arm of the conditional

may be expressed analogously. The advantage of this approach is that only a

single MILP program need be solved.

6.4.4 Control Flow Joining

At points in the program where control flow converges, a join of interval bounds

should occur. In the worked example, a control flow join occurs at p8. The

intervals of S ′8 should therefore be defined in terms of S ′7:e and S ′12:e. However, to

retain precision, abstract information should only be joined from block exits that

are reachable. If it is not possible for execution to reach p12, then the abstract

information S ′12:e should not be considered in the computation of S ′8.

The following constraints express the desired effect of the join at p8:

η6:e = 1 =⇒ (lrdi,8 ≤ lrdi,12:e)

η6:e = 1 =⇒ (urdi,12:e ≤ urdi,8)

η6:e = 1 =⇒ (lr12,8 ≤ lr12,12:e)

η6:e = 1 =⇒ (ur12,12:e ≤ ur12,8)

η6:e = 1 =⇒ (lrax,8 ≤ lrax,12:e)

η6:e = 1 =⇒ (urax,12:e ≤ urax,8)

η4:e = 1 =⇒ (lrdi,8 ≤ lrdi,7:e)

η4:e = 1 =⇒ (urdi,7:e ≤ urdi,8)

η4:e = 1 =⇒ (lr12,8 ≤ lr12,7:e)

η4:e = 1 =⇒ (ur12,7:e ≤ ur12,8)

η4:e = 1 =⇒ (lrax,8 ≤ lrax,7:e)

η4:e = 1 =⇒ (urax,7:e ≤ urax,8)

Each constraint expresses the conditional propagation of an interval bound be-

tween two blocks. Each bound propagation is predicated upon the reachability of

the exit node from which the bounds are propagated. If a block exit decision, ηi:j,

indicates unreachability, i.e. ηi:j = 0, then propagation constraints based upon

this decision are rendered vacuous.

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 126

The above constraints are reduced to MILP constraints using the equivalence

shown in Section 6.3.2. Note that blocks with a single incoming edge are in fact

treated as a join. This is necessary, since if the predecessor’s exit edge decision

indicates unreachability, then interval bounds should not be propagated.

The prerequisites for the analysis of binaries using only unsigned integer in-

terpretations has now been fully detailed. However, realistically binaries interpret

registers not only as unsigned integers, but sometimes as signed integers, or even as

both signed and unsigned integers simultaneously. The following section explains

how the analysis can be extended to account for these behaviours.

6.5 Modelling Mixed Signedness

Until now it has been assumed that all registers are interpreted in an unsigned

context, yet in reality programs use a mix of signed and unsigned interpretations.

An unsigned 64-bit number ranges between 0 and 264 − 1, where as a signed 64-

bit number ranges between −263 and 263− 1. This means that certain arithmetic

instructions will have different outcomes depending upon the interpretation of the

operand register(s). It could be argued that the analysis only needs to care about

the unsigned context, since the computation of the result of arithmetic operations

is sign agnostic. Whilst this is true, comparison operations such as cmp set the

flags in the status register, some flags under the assumption that the operations

are signed and others assuming the operands are signed. Numeric comparisons

are usually followed by one of the conditional jump instructions, which reads a

subset of the previously set flags, therefore possibly indicating a signed or unsigned

interpretation.

The upshot of this is that the analysis must have some notion of signed and

unsigned interpretations in order to decide whether a conditional jump is taken.

Ideally, a mechanism could be devised which is able to interpret a register’s interval

bounds as either signed or unsigned. This is not straightforward, as by necessity,

the numeric bounds of an interval have already committed to either a signed

or an unsigned interpretation and it is not clear how interval bounds could be

cast to a different sign interpretation within the optimisation problem. Another

approach is to model every register twice, once for the signed interpretation and

once for unsigned. This would mean that each register at each program point

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 127

would be represented by four optimisation variables, a lower and upper bound

for the unsigned context and a lower and upper bound for the signed context.

However, this doubles the number of optimisation variables required to express

intervals in the MILP.

Instead, a compromise is proposed. Type inference is used to gain insights on

the possible interpretations of each register throughout the program. Using this

information it is possible to model interval bounds for only the sign interpreta-

tions that actually occur within the program. This means that the MILP can be

encoded utilising fewer optimisation variables. To illustrate, Figure 31 shows the

outcome of the type inference for a snippet of synthetic x86-64 code. The code

uses both unsigned numeric comparisons (cmp followed by ja) and signed numeric

comparisons (cmp followed by jg). For each program point, a set of possible inter-

pretations of the registers is inferred. From this outcome it is possible to decide

which sign contexts must be modelled in the MILP program. For example at p16

it is only necessary to model the unsigned interpretation of rax. Also note that

it is not necessary to model rcx at all since neither the signed nor the unsigned

interpretation are required at any program point. This is because the value stored

in rcx is not used and this is reflected by the type inference.

Type information is not explicit in binary code, so the intended interpreta-

tion(s) of each register must be inferred. To simplify terminology, henceforth let

the intended interpretation(s) of a register be referred to as simply the types of

a register. The proposed type inference is a flow analysis inspired by, amongst

others, liveness analyses used in compiler construction [4]. Like these analyses,

the algorithm uses an in and out state for each program instruction to propagate

information entering and leaving each program point. These states are used to

propagate information throughout the control flow of the program1. Unlike sim-

ilar flow analyses that infer types for, for example, C or Java, it is necessary to

propagate information both backwards and forwards. This is because the types

of a register are not known at the definition site and must be inferred from status

flag usage patterns.

To demonstrate, in the code snippet shown in Figure 31, although rbx is

defined at p1, the type the register is not known until the status register flags

assigned by 〈cmp rbx, 0x1〉 at p3 have been paired with the unsigned status flag

1The control flow of the program must be known a priori.

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 128

pi Instruction rax rbx rcx

p0 mov rax, 0x0 {s, u} ∅ ∅
p1 mov rbx, 0x666 {s, u} {u} ∅
p2 mov rcx, 0x1 {s, u} {u} ∅
p3 cmp rbx, 0x1 {s, u} {u} ∅
p4 ja p6 {s, u} {u} ∅
p5 jmp p11 {s, u} {u} ∅
p6 cmp rax, 0x10 {s, u} {u} ∅
p8 jg p15 {s, u} {u} ∅
p9 inc rcx {s, u} {u} ∅
p10 jmp p6 {s, u} {u} ∅
p11 cmp rax, 0x10 {s, u} {u} ∅
p12 ja p15 {s, u} {u} ∅
p13 inc rcx {s, u} {u} ∅
p14 jmp p11 {s, u} {u} ∅
p15 mov rax, 0x0 ∅ {u} ∅
p16 mov rax, rbx {u} {u} ∅
p17 ret {u} {u} ∅

Figure 31: Example outcome of type inference.

use of 〈ja p6〉 at p4. The former instruction assigns (defines) the status flags

based upon both the signed and unsigned interpretations of rbx, then the ja

instruction reads the flags to ascertain if the previous comparison was true in the

unsigned case. The type of rbx cannot be ascertained from either instruction in

isolation, i.e. 〈cmp rbx, 0x1〉 does not allude to the sign of rbx and 〈ja p6〉
does not indicate which register the unsigned comparison was based upon. Thus

the flag definitions (flag-defs) must be paired with the flag uses (flag-uses). The

pairing is complicated by the fact that some instructions set only a subset of the

flags in the status register.

With these considerations in mind, the pairing of flag-uses with flag-defs is

accomplished by propagating flag-uses backwards towards flag-defs. When the

flag-uses meet their corresponding flag-defs, the flag-uses cease to be propagated

further backwards and a register type may be inferred. Once inferred, type infor-

mation is propagated forwards until the register is redefined, and backwards to

the definition site of the register.

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 129

6.5.1 Algebraic Inference Structures

First, the data structures over which the analysis operates are defined.

Flag State (F mapping)

Let C = {o, s, z, c} be a set of status flags which can reveal information pertaining

to register types. These flags are: the overflow flag, the sign flag, the zero flag and

the carry flag. For each of these flags, at each program point, the analysis keeps

track of whether the current definition of the flag is used later by another instruc-

tion. Here “used” means that the flag is read, but not mutated. By contrast,

when a flag is mutated, it is said to be “defined”. Let B be the totally ordered

set of Booleans, where True means that the current definition of a flag may be

used before its redefinition and False means that the current definition of a flag

is never used before its redefinition. The domain forms a two-element complete

lattice 〈B,vB,tB,uB〉, where:

b1 vB b2 ⇐⇒ b1 ∧ b2 = b1

b1 tB b2 , b1 ∨ b2

b1 uB b2 , b1 ∧ b2

For each program point, a mapping C → B is held indicating whether the

current definition of each of the status flags is used before its redefinition. The set

of all such mappings F is also partially ordered so as to form a complete lattice

〈F ,vF ,tF ,uF〉, where:

f1 vF f2 ⇐⇒ ∀c ∈ C. f1(c) vB f2(c)

f1 tF f2 , f3 where ∀c ∈ C. f3(c) = f1(c) tB f2(c)

f1 uF f2 , f3 where ∀c ∈ C. f3(c) = f1(c) uB f2(c)

The bottom element ⊥F indicates that no status flag may be used before its

redefinition, i.e. ∀c ∈ C. ⊥F(c) = False. The top element >F is defined anal-

ogously to mean that all status flags may be used before their redefinition, i.e.

∀c ∈ C. >F(c) = True.

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 130

Register State (R mapping)

Next, a data structure is introduced to track the possible types of a single register.

A register may be interpreted: signed, unsigned, both signed and unsigned, or

neither. To this end, the type of a single register is an element drawn from L =

℘({s, u}). An ordering is defined so as to form a complete lattice, 〈L,vL,tL,uL〉,
where:

l1 vL l2 ⇐⇒ l1 ⊆ l2

l1 tL l2 , l1 ∪ l2
l1 uL l2 , l1 ∩ l2

The top element >L = {s, u} indicates that a register is interpreted both signed

and unsigned, whereas the bottom element, ⊥L = ∅, means that there is nothing

to indicate that the register is either signed or unsigned.

Since it it necessary to track the possible interpretations of each register, map-

pings are used to associate each register to its types. Let R be a set of registers

to track. For example purposes, assume that R = {rax, rbx, rcx}. Then R is the

set of all mappings R→ L ordered as follows:

a1 vR a2 ⇐⇒ ∀r ∈ R. a1(r) vL a2(r)

a1 tR a2 , a3 where ∀r ∈ R. a3(r) = a1(r) tL a2(r)

a1 uR a2 , a3 where ∀r ∈ R. a3(r) = a1(r) uL a2(r)

The bottom element ⊥R indicates that no type information is known for any

register, i.e. ∀r ∈ R. ⊥R(r) = ∅. Similarly, for >R where ∀r ∈ R. >R(r) = {s, u}.

Overall State

Finally, the previously defined structures are composed, thus forming the overall

state that shall ultimately be propagated by the type inference. For each program

point, a tuple drawn from K : R×F represents the register types and the status

flag usage. The orderings are lifted in the obvious manner:

〈a1, f1〉 vK 〈a2, f2〉 ⇐⇒ (a1 vR a2) ∧ (f1 vF f2)

〈a1, f1〉 tK 〈a2, f2〉 , 〈a1 tR a2, f1 tF f2〉
〈a1, f1〉 uK 〈a2, f2〉 , 〈a1 uR a2, f1 uF f2〉

The bottom and top elements of K are ⊥K = 〈⊥R,⊥F〉 and >K = 〈>R,>F〉

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 131

respectively. The first and second elements of a tuple drawn from K are referred

to as the register state and the flag state respectively. The register and flag state

of some k ∈ K are addressed fst(k) and snd(k).

6.5.2 Algorithm

The type inference algorithm is shown in Algorithm 8. To aid readability, sub-

scripts of join and meet operations are omitted; the exact operation being used

can be inferred from the operands.

The analysis iterates over a vector of instructions instrs that constitutes the

program. Each instruction is uniquely identified by the program point imme-

diately prior. Instructions shall be denoted 〈px : op arg1, ...〉, where px is the

program point, op is an assembler operation and argi is an operand. Let the set

of all instructions be denoted I. The set of predecessors and the set of successors

of an instruction i is denoted pred(i) and suc(i) respectively. For each instruction

i, the in [i] and out [i] states are elements of K. The states initially begin empty

(⊥K). The algorithm iteratively propagates flag and register states between the

in and out states whilst inferring register types. Flag states are propagated

backwards only, whereas register states are propagated in both directions. Care is

taken to ensure that flag state does not propagate backwards beyond the defini-

tion site of each flag. Similarly, register state should not propagate outside of the

scope of each register’s definition. Propagation continues until the in and out

states achieve a fixpoint. Since most information is being propagated backwards,

a fixpoint is reached quicker if the program is iterated backwards, hence the call

to Reverse.

For each instruction, the analysis first calls upon the functions UsesFlags,

DefinesFlags and DefinesRegs (at line 8):

• The function UsesFlags : I → F is an oracle indicating the flag usage

of an instruction. For example, UsesFlags(〈px: jge rdi〉) returns the

mapping {o 7→ True, s 7→ True, z 7→ False, c 7→ False}, thus indicating

that the instruction uses the overflow and sign flags. This function is used

to add information to the flag states of the analysis. This information is

propagated backwards to flag definition sites.

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 132

Algorithm 8 Inferring register types.

1: function InferTypeDefs(instrs)
2: for i in instrs do
3: in [i]← out[i]← ⊥K
4: end for
5: repeat
6: out ′ ← out
7: in ′ ← in
8: for i in Reverse(instrs) do
9: 〈fdef , fuse , rdef 〉 ← 〈DefinesFlags(i),UsesFlags(i),DefinesRegs(i)〉

10:
11: fst(in [i])← (

⊔
p∈pred(i) fst(out [p]))

⊔
(fst(out [i])

d
rdef)

12: snd(in [i])← (snd(out [i])
d

fdef)
⊔

fuse
13:
14: 〈rinf , rxfer 〉 ← 〈InferredRegs(i, snd(out [i])),XferredRegs(i, fst(out [i]))〉
15: fst(out [i])← (

⊔
p∈suc(i) fst(in [p]))

⊔
rxfer

⊔
rinf

16: snd(out [i])← (
⊔

p∈suc(i) snd([p]))
17: end for
18: until out ′ = out ∧ in ′ = in
19: return out
20: end function

• The function DefinesFlags : I → F is another oracle that indicates which

flags are defined by an instruction. Take for example the cmc instruction

(complement carry flag). DefinesFlags(〈px : cmc〉) = {o 7→ True, s 7→
True, z 7→ True, c 7→ False}, meaning that the carry flag is mutated

whilst the other flags are untouched. At first this may seem counter in-

tuitive. However, at the point where a flag c ∈ C is redefined, flag state

for c should not be propagated backwards any further. The above result of

DefinesFlags is constructed in such a way that the meet (uF) with an

element of F erases the usage information of the carry flag.

• The function DefinesRegs : I → R indicates which registers are defined by

an instruction. For example, DefinesRegs(〈px : mov rax, 9〉) = {rax 7→
∅, rbx 7→ {s, u}, rcx 7→ {s, u}}, therefore indicating that rax is defined by

the instruction. The result is constructed in such a way that the meet (uR)

with a register state will erase known types of the rax register. This enables

the analysis to limit register types to the scope of each register’s definition.

Lines 10 and 11 update the register in state of the current instruction. The

new in register state is the join of the register state held by predecessor out

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 133

states and the current instruction’s out state. This has the effect of propagating

register state both backwards and forwards. Note however, that the new register

state is met (uR) with the register definitions of the current instruction. This

has the effect of preventing type information from being propagated back beyond

the definition site of the register. Line 11 then propagates flag state backwards

from the current instruction’s out state, in the process introducing any flag uses

of the current instruction. If the current instruction defines any flags, then their

usage information is also erased at this point, thus preventing them from being

propagated backwards further.

The remainder of the inner loop deals with the update of out [i]. This is

achieved using two more functions:

• Given an instruction and a flag state, the function InferredRegs : I×F →
R determines which (if any) types are inferred by an instruction. This is

how register type information enters the analysis. The inferred type informa-

tion varies depending upon the instruction, for example InfersTypes(〈px:
cmp rax, 2〉, f) infers signed type upon rax if f(o) ∨ f(s). This is be-

cause when either the overflow flag or the sign flag is set in the mapping, a

successor instruction has used the flags for a signed interpretation of rax.

Similarly, the same instruction infers unsigned type upon rax if f(c).

• Some instructions suggest that the types of its operands are the same. For

example, the instruction 〈cmp rax, rbx〉, suggests that the type of rax is the

same as the type of rbx and vice versa. The types are said to be transferred.

In such a case, the function XferredTypes : I×R → R returns a register

state such that the types of rax and rbx have been merged.

Line 14 updates the register state of the out [i] . This is the join of the successor

in register states with any newly inferred types or types transferred between the

current instruction’s operands. Line 15 then propagates flag use information from

the in states of successors into the current instruction’s out state.

Once the analysis reaches a fixpoint, the out state is returned, from which the

types of each register at each program point can be extracted.

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 134

6.6 Experimental Results.

ILP, hence MILP, is NP-hard, which begs the question of what scale of problem

can be tackled by the techniques proposed in this chapter? To investigate the

feasibility of the approach and the impact of type inference, tooling was developed.

Given a binary, a function name (or address) and some input intervals, the tooling

automatically performs the intra-procedural interval analysis described in this

chapter. The bulk of the tooling is written in Python. The PyElfTools module

was used to extract function addresses from a binary and the Distorm3 module

was used for x86-64 disassembly. Ocaml bindings to the Parma Polyhedra Library

(PPL) were used for MILP solving [5]. Note that PPL was chosen for its arbitrarily

large integer support, which is required to accommodate the large M constants

in the constraint systems.

Experiments were conducted for six small x86-64 functions:

bubble A bubble sort algorithm.

worked The worked example program shown in Figure 28.

fib An iterative implementation of a Fibonacci number generator.

euclid A subtractive implementation of Euclid’s GCD algorithm.

fold A function to fold a list of integers with addition.

listsum A function to compute the pointwise addition of two equally sized lists.

Input intervals were devised for each of the above experiments and the problem

was passed to the tooling. In all cases, the intervals computed (not shown) were

precise. Since it is the feasibility of approach at question, each problem was solved

twice, once without type inference and once with type inference. Each experiment

is given 180 seconds in which to terminate. This is to investigate the value of type

recovery in the interval analysis.

Figure 32 shows typical solving times of each of the experiments both with

type inference (indicated by a 3) and without type inference (indicated by a 7).

The number of variables in the MILP problem are also shown for comparison.

In general, the solving times are worse than expected, although it is evident that

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 135

Func. # Regs # Instrs Type Inf. # Vars Time (s)

bubble 5 19
7 787 > 180
3 484 135

worked 5 19
7 332 60
3 183 3

fib 6 15
7 572 > 180
3 342 24

euclid 3 14
7 347 > 180
3 239 24

fold 5 9
7 311 35
3 254 14

listsum 7 10
7 451 76
3 388 40

Figure 32: Experimental results

type inference does improve the solving times. This is most evident for the worked

example program, where the solving time with type inference is 5% of that without

type inference. In all cases type inference also reduces the number of optimisation

variables required. This would suggest that the improved solving times are a

direct consequence of using fewer optimisation variables.

Note that without type inference some experiments timed-out (took greater

than 180 seconds to solve). Note too that the solving times do not appear to grow

linearly with the number of optimisation variables (reflecting the NP-hard nature

of ILP).

6.7 Chapter Summary

The methods presented in this chapter have shown that it is possible to encode

piecewise linear functions into mixed-integer linear programming problems. In

turn, this allows the encoding of modular arithmetic behaviours into a range anal-

ysis underpinned by mixed-integer linear programming. This means that integer

overflow scenarios that arise in binary programs can be soundly and faithfully

modelled. The ability to model these scenarios is paramount when auditing sensi-

tive binary code, where an integer overflow could lead to security vulnerabilities,

or worse, published exploits. It was also shown that decision variables can be used

to eliminate the need for a binary search over many smaller linear programs (this

CHAPTER 6. MODELLING INTEGER OVERFLOW WITH MILP 136

was the approach used in Chapter 5). A type inference was also shown which min-

imises the number of optimisation variables required to model mixed-signedness

and as a consequence, improves the performance of the analysis.

Experimental results indicate that the performance of the method needs to be

improved before it can be considered feasible. One possible approach would be

to use a more compact representation of the abstract semantics, which would in

turn reduce the size of the constraint system and number of optimisation variables

used. For example, single static assignment (SSA) could be used to achieve this.

As it stands, the method introduces interval bounds for every register at every

program point, regardless of whether the registers were mutated or not.

Chapter 7

Related Work

Range analysis has a long history in compilers and verification, dating back to the

seminal work of Harrison [61] who leveraged ranges for compiler optimisations.

Whilst this work is not formalised by abstract interpretation (which is hardly

surprising since AI was formalised that same year) Harrison’s ideas are strongly

reminiscent of the fundamental underpinnings of the framework. His analysis

operates over ranges of possible values, i.e. the interval domain. Information

regarding ranges is propagated and “narrowed” (not in the sense of fixpoint ac-

celeration, but rather from > down) using an iterative solving algorithm which

uses a work-list, ψ. When describing his termination argument, he explains that:

“Additions are made to ψ only when the range of a variable at some

def point is narrowed. But since computer representations allow for

only a finite number of values, this narrowing can only be performed

a finite number of times.”

In retrospect, this is very similar to the termination argument behind the Galois

connection approach to abstract interpretation, where, because the abstract lat-

tice is finite and the transfer functions are monotonic, termination is guaranteed

under the ascending chain condition. In Harrison’s case however, termination

is guaranteed under the descending chain condition, as ranges are initialised to

[−∞,∞] and iteratively strengthened. Further, he explains that “the guarantee

that a loop will only execute a few trillion times is not comforting” and then pro-

ceeds to propose a mechanism not dissimilar to widening, thereby ensuring fast

termination.

137

CHAPTER 7. RELATED WORK 138

Of course since Harrison’s work, range analysis has been studied thoroughly,

especially since the acceptance of abstract interpretation in both academic and

industrial circles. This chapter discusses recent developments in and around the

topic of range analysis. Specifically, literature of relevance to the work presented

in Chapters 3, 4, 5 and 6 is discussed.

7.1 Abstraction of Boolean Formulae

Of particular relevance to the work shown in Chapters 3 and 4, where the aim

is to directly abstract Boolean formulae, is the problem of automated transfer

function synthesis. Conventionally, when designing an abstract interpretation, a

set of abstract transfer functions parameterised by predecessor states is defined.

The result of each transfer function should over-approximate the actual states that

may arise. Of course, it is hoped that the transfer functions compute the best over-

approximations of the concrete states, and that more importantly, the transfer

functions are sound. Because transfer functions are usually defined manually,

there is no such intrinsic guarantee of either soundness or precision. For this

reason, many have devised techniques by which to automatically generate transfer

functions from concrete descriptions of program semantics.

Brauer et al. show that transfer functions for an interval abstraction can

be synthesised automatically from a Boolean formula using universal quantifica-

tion [16]. The aim of the method is to compute approximate transfer functions

that characterise the possible register ranges for each basic block in a binary

program. The method begins with Boolean formulae that model the concrete

semantics of each individual CPU instruction (as described in Chapter 4). Each

formula maps bit-vectors representing input registers to bit-vectors that represent

the mutated output registers. Then the semantics of a block can be expressed

by composing the smaller single-instruction formulae to give a composite block

semantics formula. Next, bit-vectors are introduced to represent the lower and

upper bounds of the input and output registers of the block, then using universal

quantification, the bounds are constrained so as to describe the block semantics as

an update of interval bounds. The formula is is converted into conjunctive normal

form (CNF) using the Tseitin transform [115], then quantifiers are eliminated, first

CHAPTER 7. RELATED WORK 139

the existentially quantified Tseitin variables and then universally quantified vari-

ables. This is essentially the same quantifier elimination problem that is addressed

in Chapter 4. The authors eliminate the quantifiers using binary resolution and

∀-reduction. As previously mentioned, this approach to quantifier elimination has

complexity issues. Recently, a new quantifier elimination technique, DSS, has

surfaced [56] which may be applicable to Brauer’s work. DSS will be discussed

shortly in Section 7.2.

Reps et al. show that transfer functions can be synthesised with the aid of

almost any decision procedure [96]. Reps’ idea is that, if a decision procedure

is available that can be called upon for solutions to a concrete transformer (an

oracle), then the best abstract transfer function can be iteratively derived. The

decision procedure, of course, could easily be a SAT solver, thus the method can

be used to abstract Boolean formulae. Upon each iteration, the oracle is asked

for a solution, which is then abstracted and joined (t) with the abstractions

obtained from the previous iterations. For each solution given by the oracle, a

blocking constraint is added to the solver instance; this ensures that subsequent

solutions are not included in the already accumulated abstraction. When the

oracle has no further solutions to give, the abstraction characterises the most

precise transfer function possible, also referred to as the best transformer. The

method has the advantage that it is parameterised by both the concrete and

abstract domains, so the framework could easily be used to abstract Boolean

formulae into the domain of choice. Note however that, because each solution

obtained from the oracle is an under-approximation, the transfer function is refined

from the bottom of the abstract lattice upwards. It follows that the method must

be run to completion before a sound over-approximation has been derived. In other

words, the algorithm is not anytime. Premature termination of the algorithm will

yield an under-approximated transfer function, whereas in static analysis, an over-

approximation is typically required for soundness.

By comparison with the previously mentioned transfer function synthesis tech-

niques, the ideas presented in Chapters 3 and 4 aim to compute ranges from a

Boolean formula without explicitly synthesising intermediate transfer functions.

Rather, given a Boolean formula representing a sequence of CPU instructions,

the algorithms aim to directly compute a range for a register at a given program

point. The range may then be refined into an over-approximate set should more

CHAPTER 7. RELATED WORK 140

precision be required. Furthermore, the set abstraction algorithm, unlike Reps’,

may be halted prematurely to yield a sound over-approximation.

Outside of transfer function synthesis, symbolic decision trees offer an alter-

native way by which to relate numeric values to Boolean expressions [14], for

example in a reduced product abstract domain. Blanchet et al. deploy this tactic

to abstract an expression such as x = (y < 3) in high-level C programs. The au-

thors propose that a decision tree should be used to relate Boolean decisions, then

each leaf node corresponds to an element drawn from a numeric abstract domain

(the authors use the interval). This construction allows a sequence of Boolean

decisions to be related to numeric properties. Unfortunately, the size of a decision

tree varies greatly depending upon the ordering of the variables within. In the

worst case, the size of the tree is exponential in the number of variables. To work

around this issue, the authors implement variable packing [34], where Boolean

decision variables are grouped into small packs whose members are determined

through inter-variable dependencies. Since the variables of any two given packs

need not be related, several smaller and unrelated decision trees may then be con-

structed, whose aggregate size is much smaller than a large decision tree relating

all Boolean variables. Unfortunately, to be tractable, the size of the packs must

be limited to at most four variables. Whilst a similar approach could be used for

the goal of relating status flags to numeric register values, instead the work in

Chapters 3 and 4 approaches the problem by using a SAT solver. This sidesteps

problems relating to variable orderings, therefore techniques like variable packing

are not required. Although the Boolean satisfiability problem is NP-hard, modern

SAT solvers such as MiniSat [43] often perform adequately and can be used as a

black box.

Using a bit-level decision procedure like SAT has the advantage that bitwise

details, like those of the status flags, can be easily modelled. However, others

have taken approaches which do not explicitly take into account the semantics

surrounding the status flags. Cifuentes and Van Emmerik [27] have shown how

to compute numeric ranges for switch tables using reverse slicing. The idea is

that high level constructs can be recognised by syntactic matching against known

compiler idioms. The advantage of such an approach is that no bit-level model

of the program is required. For example a switch table is usually implemented

as follows. First a bounds check is performed and a conditional jump will skip

CHAPTER 7. RELATED WORK 141

the remainder of the switch code if the operand is out of range. If the operand

is in range, an address is computed (usually by addition and shifting), followed

by an indirect jump to this address. Cifuentes suggests scanning backwards upon

reaching an indirect jump so as to extract a range of possible jump targets from

the bounds check.

Similarly, in their strided-interval analysis, Balakrishnan et al. [7] use slicing to

extract high-level predicates from binary code. A high-level predicate is required

to correctly partition an abstract state between the true and false branches of a

conditional jump. For example, consider the instruction sequence 〈cmp rax, 5;

jb addr〉. Whether or not the conditional jump is taken depends upon whether

rax < 5 in an unsigned context. Balakrishnan proposes that a lookup table be

used to map an instruction that defines the status flags and an instruction that

reads the status flags to a high-level predicate. In fact, this was the same technique

used by the work in Chapters 5 and 6 to partition abstract states at control flow

divergence points.

Approaches that depend upon slicing to extract ranges or predicates may be

effective for binaries conforming to a known standard complication model, but

outside of this restricted domain they are fragile. Since slicing is entirely syn-

tactic, diversified or obfuscated binaries, or even binaries generated by unfamiliar

tool-chains, are likely to give inconclusive or incorrect results. For example, con-

sider the task of specifying a high-level predicate for the following sequence of

instructions: 〈shl eax, 4; inc eax; ja 0x1234〉. The meanings of these instruc-

tions are: shift eax left four times, increment eax, and jump-if-above to 0x1234.

It may be tempting to devise a high-level predicate for the pairing of inc and ja.

This is troublesome for two reasons. Firstly, the ja instruction (jump-if-above)

only holds true to its name if it is preceded by a cmp instruction, which in this

case it is not. Actually, ja transfers control flow if both the carry and zero flags

are clear (cf= 0 ∧ zf= 0). Secondly, and more importantly, to disregard the shl

instruction is incorrect because inc does not set the carry flag. This means that

when ja comes to read the status register, it is reading the carry flag as defined

by shl and the zero flag as defined by inc. Therefore, specifying a high-level

predicate for each possible instruction sequence is a non-trivial task in itself.

CHAPTER 7. RELATED WORK 142

7.2 Quantifier Elimination

The problem of quantifier elimination (QE) for Boolean formulae is by now well

recognised. Given a quantified Boolean formula f , a formula g must be found

which is quantifier-free, yet logically equivalent to f . Elimination of quantifiers

is often a necessary step should a quantified formula need to be passed to a SAT

solver. As discussed in Chapter 4, the standard quantifier elimination techniques

are impractical in cases where a large number of variables are quantified. Several

new methods have been proposed.

Biere showed that the standard QE techniques (resolution and expansion) can

be feasible if operations are carefully scheduled so as to keep the formula size

small [11]. In this work the author operates upon a formula with alternating

quantifier scopes, for example ∀W. ∃X. ∀Y. ∃Z. f , where W , X, Y and Z are sets

of variables and f is a CNF formula. The aim is to derive an equisatisfiable formula

which is either quantifier free, or contains only existential quantifiers, thus allowing

the application of a SAT solver. To this end, quantifiers are eliminated one by one.

The quantifier scopes are ranked from 1 (outermost) to m (innermost). At each

stage Biere eliminates either one of the existentially quantified variables at scope

m using resolution, or he eliminates one of the universally quantified variables

at scope m − 1 using a slight variation of expansion-based universal QE. When

the latter elimination occurs, fresh variables and further existential quantifiers

must be introduced to preserve equisatisfiability. For example, given a formula

∀{x1}. ∃{x3}. (x1∨x2∨x4)∧(¬x3∨x4), the outer universal quantifier is eliminated

by expansion as follows: ∃{x3, x
′
3}. (0∨x2∨x4)∧(¬x3∨x4)∧(1∨x2∨x4)∧(¬x′3∨x4).

Notice that the fresh existentially quantified variable x′3 is used in one half of

the expanded formula. This effectively works around the need to eliminate the

innermost existential quantifiers first, albeit at the cost of introducing further

existential quantifiers. After each elimination step, the formula is simplified (by

∀−reduction, absorption, etc.) to reduce its overall size. The exact sequence of

resolve/expand operations is determined by a scheduling algorithm which aims to

minimise the size of the CNF at each elimination step. For each possible next

elimination step, a cost function computes the number of literals by which the

formula would grow and the step with the least cost is chosen. Experimental

results show, not surprisingly, that the method fares well for quantified boolean

CHAPTER 7. RELATED WORK 143

formulae (QBF) with structure, but much worse for randomly generated QBF.

Brauer et al. [19] have shown that the task of existential quantifier elimination

itself can be almost entirely delegated to a SAT solver. The method works by

first taking a formula ∃X. f in CNF. To eliminate the existentially quantified

variables, the formula must be projected upon the set of variables Y = vars(f)\X.

The clauses of f are encoded into so-called dual-rail form. This is achieved by

replacing the positive and negative occurrences of each yi ∈ Y with fresh Boolean

variables y+
i and y−i . Extra constraints are added to ensure that each y+

i and

y−i are not simultaneously true. This encoding allows a model to express the

absence of a variable in an implicant. Brauer et al. show that by augmenting

the dual-rail encoded formula with a sorting network, a set of short implicants of

the input formula can be found by incremental SAT. By finding short implicants,

the need to enumerate each and every possible SAT model is avoided and in

the process the existential quantifiers are eliminated. A secondary dualisation

step can be used to convert the set of implicants into a set of implicates. The

approach is attractive, since it derives a quantifier-free equivalent formula in either

disjunctive normal form (DNF) or CNF using SAT as a black box. Further,

because the method aims to avoid enumerating redundant models, solving times

should be fast. The authors claim that the method finds the minimal set of

shortest implicants (the prime implicants), however, due to an unfortunate error

in the formulation of the method, it is entirely possible for the method to find

redundant implicants. The authors assume that they are able to find the shortest

implicants due to the fact that any implication holding with respect to the original

input formula also holds within the corresponding dual-rail encoding, however,

this is not true. For example x1 =⇒ ∃x3. (x1) ∧ (x2 ∨ ¬x3) ∧ (¬x2 ∨ x3), yet

x+
1 6=⇒ ∃x3. (x+

1)∧(x+
2 ∨¬x3)∧(¬x−2 ∨x3)∧(¬x+

2 ∨¬x−2). The consequence of this

is that the prime implicates may not be found and because redundant implicants

may be found, the performance of the method may also be impacted.

Most recently, Goldberg et al. [56] proposed quantifier elimination by the

derivation of dependency sequents (DDS). The aim of DDS is to find a quan-

tifier free formula equivalent to ∃X.F , where F is a CNF formula and X is a

set of variables. Clauses are systematically added to F which are implied by F ,

but that are not dependent upon the variables of X. Then, at the final stage,

CHAPTER 7. RELATED WORK 144

any clause containing a variable in X may then be dropped to give a quantifier-

free equivalent formula in CNF. Under the hood, the method is actually based

upon binary resolution, but the beauty of the method is the way in which very

few resolvent clauses are generated. The possible assignments to the variables

over which ∃X. F is defined forms a binary decision tree. Each node in the tree

represents a partial assignment to the variables. Suppose the current partial as-

signment is denoted q. An edge in the tree represents the extension of q with

a further assignment of one more as-of-yet unassigned variable. The algorithm

begins at the root node of the tree with q = 〈〉 and searches the tree in a depth

first fashion. At each node, the algorithm specialises the formula to reflect the

new variable assignment (denoted Fq), before attempting to prove the redundancy

of each unassigned quantified variable. A quantified variable is redundant under

the current assignment, Fq, if it appears monotonically or if Fq is unsatisfiable.

For each redundant quantified variable a dependency sequent (D-seq) of the form

(q) → Z is generated, meaning that under the assignment, q, the set of vari-

ables Z is redundant in F . When all unassigned quantified variables are proven

redundant, the algorithm need not search deeper down the current branch, thus

the search space is pruned. Binary resolution only occurs when both choices of

a branching decision yield the formula unsatisfiable. In such a case, two falsified

clauses, one from each decision, are resolved and the resolvent clause is added to

F . Once the search space is exhausted, clauses containing any quantified variables

are removed to arrive at a quantifier-free equivalent formula. Whilst the method

is sensitive to the order in which decisions are placed in the search tree, the au-

thors’ experimental results suggest that the algorithm fares well for medium to

large-sized problems even with random variable ordering.

The work undertaken in Chapter 4 differs from the aforementioned approaches

in that it explores the feasibility of performing quantifier elimination as a math-

ematical optimisation problem. This approach permits the use of an objective

function, which can be used to find short implicates. In combination with block-

ing constraints, the method aims to minimise the number of redundant impli-

cates found. However, this work suffered from poor solving times, so for now

either Goldberg’s method or Biere’s method is preferred. Although Goldberg’s

algorithm can only perform existential quantifier elimination, once the existential

quantifiers have been removed, ∀-reduction could be used to find a quantifier-free

CHAPTER 7. RELATED WORK 145

formula equivalent to ∀I. ∃T. f , as proposed in Chapter 4.

7.3 Fixpoint Acceleration

Fixpoint acceleration is often a necessary step in making an abstract interpretation

tractable in practice. Cousot and Cousot documented the need for widening in

their seminal paper describing the AI framework [31]. Defining a bare-minimum

widening operator is simple, however, crafting an operator which gives adequately

precise fixpoints is non-trivial and is a topic which is still being explored.

In its purest form, widening is distinct from the Galois connection approach

to abstract interpretation [32]. Typically, however, widening is used as a fixpoint

acceleration technique to enhance a standard Galois-connection-style interpreta-

tion. The widening for G programs, as discussed in Chapter 2, worked in this way.

In this example, the widening scheme was rather crude and merely extrapolated

any unstable interval bound to a conservative bound when a chain of abstract

iterates exceeded a given length.

A better approach is widening with thresholds [13]. By this method, a num-

ber of intermediate widening thresholds are defined which are tried in turn. To

illustrate, consider the finite chain of iterates 〈[0, 0], [0, 1], [0, 2], . . . , [0, 41], [0, 42]〉.
The chain is long enough to warrant widening. Suppose the sequence is acceler-

ated after three iterations of instability. Instead of using aggressive widening to

extrapolate to [0,+∞], widening to intermediate thresholds spaced 20 apart could

be used in between normal iterations to give the iterates:

〈[0, 0], [0, 1], [0, 2], [0, 3], [0, 20], [0, 21], [0, 40], [0, 41], [0, 50], [0, 50]〉

In this instance, widening with thresholds gives a much more precise post-fixpoint

than by aggressive widening. This raises the question of what a suitable choice of

thresholds is. On one hand, the further apart the thresholds are spaced, the faster

convergence will be. On the other hand, the closer together the thresholds are,

the more precise the fixpoint will be. Of course, there is no need for thresholds to

be evenly spaced apart either.

In response to the problem of deciding suitable widening thresholds, Simon et

al. [109] show an approach based on the observation that useful thresholds often

CHAPTER 7. RELATED WORK 146

occur at the point where an abstract semantic equation flips from being unsat-

isfiable to being satisfiable. This change often signifies a change in control flow

behaviour which is likely to propagate meaningful abstract information. Simon et

al. strive to automatically infer useful thresholds by observing the rate of change

of an increasing (or decreasing) bound between two consecutive abstract iterates.

The number of iterations that would be required to activate a dormant abstract

equation can then be estimated and adopted as a candidate widening threshold

(called a landmark in this context). By leapfrogging to landmarks the analysis can

be accelerated whilst retaining better precision than by regular threshold widen-

ing or by aggressive widening. The authors implement their widening scheme for

the polyhedral domain and note that the approach works well for typical counted

loops, e.g. for (i = 0; i < 64; i++). Simon found, however, that imprecision

is incurred if the loop is not counted linearly.

Around the same time as the discovery of widening with landmarks, Gopan et

al. [57] made a similar observation, that often loops are modal in nature. They

exemplify this with a loop that executes 100 times; in the first 50 iterations,

incrementing a variable, then in the remaining 50 iterations, decrementing that

same variable. The loop can thus be seen as being composed of two distinct

behavioral phases. The authors raise the issue that traditional widening will

typically extrapolate abstract states prior to the enablement of the second phase

of the loop, and thus beyond the ideal threshold. By contrast to widening with

landmarks, Gopan suggests that, in addition to a main interpretation, a pilot

interpretation is run alongside the main analysis. It is the role of the pilot to

“look ahead” in isolation at each of the behavioural phases. Iterates of the pilot

analysis are accelerated with standard widening and narrowing operators so as to

meet a fixpoint quickly. The abstract information discovered by the pilot is then

integrated into the main analysis. The pilot analysis then advances to the next

unexplored behaviour. Through exploring the loop behaviours in isolation, weak

abstract information is not propagated across as-of-yet disabled behaviours.

Recently, Bouissou et al. [15] proposed a novel fixpoint acceleration technique

which is not based upon widening, but rather upon the classical theory of sequence

transformation. The authors show that the iterates of an interval analysis can be

accelerated to within a close vicinity of a precise fixpoint. The method works

by running a standard Kleene iteration in parallel with a second analysis which

CHAPTER 7. RELATED WORK 147

uses sequence transformation to compute accelerated iterates. The accelerated

iterates are computed by flattening the abstract states into vectors which are then

transformed by either the Aitken method or the ε-algorithm. If the accelerated

iterates reach a fixpoint, or if the improvement between the accelerated iterates

falls below a δ constant, then the accelerated iterates are joined with the iterates

of the standard Kleene iteration. Unlike a widening operator, which extrapolates

based upon the last two abstract iterates, the acceleration operator in Bouissou’s

method works over a larger history of iterates. Also, the authors make it clear that

their method is not a replacement for widening, as the accelerated iterates may

not include the least-fixpoint (hence δ). Actually, the method is more accurately

described as means to infer widening thresholds. Note that in some cases, the

accelerated iterates may not stabilise at all, meaning that conventional widening

may be required.

By contrast to fixpoint acceleration, the work in Chapter 5 (and Chapter 6

for that matter) uses a somewhat novel solving method. Since mathematical

optimisation is used in place of Kleene iteration, the problem of finding the least-

fixpoint is delegated to a constraint solver. In turn, because there is no iteration

strategy (other than the pivot operations of the solver, which are not exposed) and

because optimisation problems are always guaranteed to eventually terminate, the

concept of widening no longer applies. This can be seen as an advantage, just as

long as the solver terminates within reasonable time.

7.4 Novel Solving Strategies

It was the pioneering work of Rugina et al. [99] that showed that the least solution

of a system of abstract fixpoint equations can be formulated as a linear program

(LP). By this approach they show that it is possible to perform a symbolic range

analysis. First the lower and upper bounds of each variable at the end of each

each block are expressed as a system of linear inequalities. A cost function is used

to minimise the distance between the lower and upper bounds, therefore finding

tightest interval bounds that satisfy the constraints, i.e. the least-fixpoint. The

inequalities then undergo a transformation into a second system of inequalities

that expresses the interval bounds as linear combinations of the initial states of

the program variables. For example, if a program were to deploy two variables,

CHAPTER 7. RELATED WORK 148

x and y, then each interval bound would be expressed as a linear combination

of the form c1x0 + c2y0 + c3, where x0 and y0 represent the initial values of x

and y. The constraint system is solved to find symbolic interval bounds. The

advantages of such an approach are twofold. Firstly, the least-fixpoint is computed

directly, so there is no explicit iteration strategy and therefore, no need for fixpoint

acceleration techniques. Secondly, the approach effectively computes a symbolic

summary of a collection of blocks. These block summaries could be used in a

bottom-up inter-procedural analysis, where block summaries could be composed

to model function calls. Their approach is ingenious, but only considers a subset

of conditional branches. The work in Chapter 5 shows a method by which to

remedy this.

Goubault et al. also leverage the fact that the computation of ranges can be

spun as an optimisation problem. The approach is conceptually similar to the work

of Rugina, but differs in a couple of aspects. Firstly, the outcome of the analysis

is a collection of concrete interval values rather than symbolic bounds. Secondly,

each basic block has associated with it a Boolean decision variable, ei, which is

constrained in such a way that it indicates the reachability of the basic block. Since

this construction relies upon discrete integer values and products of variables, the

optimisation problem is a MINLP (Mixed-Integer Non-Linear Program). The least

solution of the resulting MINLP characterises the least solution of the abstract

semantics. The introduction of integer variables into mathematical optimisation

problems can be problematic in terms of performance, so the authors provide two

alternative solving methods. By choosing an assignment for each of the ei decision

variables, the MINLP problem is reduced to a LP. Each different assignment to the

decision variables yields a post-fixpoint, the smallest of which is the least-fixpoint.

The first solving approach entails solving all of the possible LPs, thus enumerating

the post-fixpoints. Finally the fixpoint with the least solution is selected as the

least-fixpoint. This approach is conceptually similar to the approach taken in

Chapter 5, where the complementary constraints form a disjunctive binary search

space. However, since Goubault et al. lack heuristics, an exponential number of

LPs may need to be solved. In order to avoid solving a large number of LPs, the

authors also provide a solving approach based upon policy iteration, where the ei

decision variables form a basis for policy selection.

Policy Iteration (PI) itself is not commonly associated with static analysis, so

CHAPTER 7. RELATED WORK 149

a brief description of the topic is offered. PI has its roots in artificial intelligence,

where it is widely understood as a method for solving Markov Decision Problems

(MDPs). An MDP typically involves the transition of an agent through a finite

set of states to a goal state. A reward is assigned to each goal state and optionally

a cost is associated with each state transition. State transitions may be stochastic

so as to model uncertainty. A policy is a mapping from each state to one of the

possible transitions. Since there are many possible policies, the goal of the exercise

is to choose an optimal policy according to a cost function. A textbook example

would be an animal (the agent), in a grid environment (the states), moving in one

of four predefined directions (transitions) to a food source (positive reward goal)

as quickly as possible (transition cost) whilst avoiding being killed by predators

(negative reward goals) and without getting lost (stochastic transitions). The

optimal policy is a mapping from each state to the transition that probabilistically

yields the highest reward. The optimal policy of a MDP may be found in one of

two ways. The first, value iteration, involves computing the utility of each and

every state; that is, the long-term reward associated with a state, considering

all possible future transitions. To this end, a set of fixpoint equations are solved

before the optimal policy is selected based upon the utility of each state. A second

solving technique, policy iteration, does not find the optimal policy by computing

the utility of all of the states upfront, but rather by solving repeated smaller

fixpoint problems and incrementally choosing an improved policy.

Recently, ideas from MDPs, and specifically policy iteration, have made an ap-

pearance in the abstract interpretation literature. Costan et al. [30] observe that

Kleene iteration is a kind of value iteration and that many of the fundamental

concepts behind MDPs can be mapped to abstract interpretation. By approach-

ing abstract interpretation from this new angle, a solving strategy more akin to

policy iteration may be applied as a replacement to Kleene iteration. The authors

provide a framework that can be used for any arbitrary numerical domain that

forms a complete lattice. They convey the idea exemplified by a standard interval

analysis. Monotonic abstract semantics are constructed in the usual manner, be-

fore a number of states are identified; these states will provide a basis for policy

selection. In the case of the authors’ example, a state is any semantic equation

containing an abstract lattice meet, u. A policy assigns to each of the intersec-

tion operations, G1 uG2, a meaning. For example the meaning of an intersection

CHAPTER 7. RELATED WORK 150

operation could be:

• l([a, b], [c, d]) – The left side of the intersection, i.e. [a, b].

• r([a, b], [c, d]) – The right side of the intersection, i.e. [c, d]

• m([a, b], [c, d]) – The merge of the two intervals, i.e. [a, d].

When solving begins, the abstract states begin at the top of the lattice and an

initial policy is selected using heuristics. One of the intersection operations is

selected and solved to a fixpoint under the current policy. This is called the value

determination phase and can be performed by either Kleene iteration or by an ex-

ternal decision procedure. Note that during value determination, a single abstract

semantic equation is solved in isolation of the rest. After value determination ter-

minates, the entire system of semantic equations is evaluated once to decide if a

global fixpoint has been met and if not, policy improvement is invoked. The in-

tersection point whose bounds are still unstable is chosen and the meaning of the

intersection is changed. Value determination is then invoked upon the semantic

equation whose policy was improved. The process continues until a fixpoint is

met. The interval bounds at the time of termination are a post-fixpoint of the ab-

stract semantics. Experimental results show that often the least-fixpoint is found

and in far fewer operations than with Kleene iteration plus widening. The quality

of the obtained fixpoint greatly depends upon the choice of initial policy, but the

authors provide a method by which to detect and recover from a post-fixpoint.

Gaubert et al. [49] showed that the technique could just as easily be applied to

relational domains that form a complete lattice. In this work, the authors show

that PI can be applied to the zone abstract domain [85] to capture relationships

of the form x − y ≤ c, and to the template constraint matrix abstract domain

(TCM) [102] to capture relationships of the form ax + c ≥ 0 where each ai is

fixed a priori. Several other works extending this idea have surfaced [50, 51, 2]

and most recently the work of Gawlitza et al. [52] shows that the idea can even

be applied to arbitrary polynomial template domains.

The work presented in Chapters 5 and 6 could be used to enhance the ap-

proaches underpinned by PI. For example, Costan’s analysis uses Kleene iteration

with widening for the value determination phase, but this could be replaced by

linear programs akin to those described in this thesis.

CHAPTER 7. RELATED WORK 151

7.5 Modulo Arithmetic Abstraction

One way to model modulo arithmetic in an abstract interpretation is to make

the modulo behaviour inherent in the abstract domain. Amongst the first of the

domains to take this approach was the congruence domain [59]. A congruence is a

relational domain, meaning that it can capture the relationship between different

program variables. Numeric domains, by contrast to relational domains, can only

express numeric values regardless of the values of other variables. The simplest

congruence is of the form x ≡m d, where x,m and d are all integers. Here x

is said to be congruent to d modulo m, sometimes written x mod m = d. Such

a congruence is useful for expressing a set of strided values. For example x ≡5

0, where x is a non-negative integer, represents a set {0, 5, 10, 15, . . .}. More

generally, congruences can express arbitrary modulo relationships between any

number of variables, i.e. cx ≡m d, for example 3x + 2y ≡256 4. Granger’s main

contribution was the formalisation of the congruence as an abstract domain for

use in the AI framework. Since Granger’s pioneering work on the congruence

domain, several novel uses of the congruence have surfaced, for example as an

inter-procedural analysis [87] and for bit-level reasoning [72].

Congruences are useful for capturing variable relationships and strides, but

fall short with regards to range analysis, i.e. the congruence domain possesses no

ability to express that a modulo relationship can only hold between a given range.

The result is a loss of precision. Brauer et al. [18] note that the precision loss

of congruences and intervals manifest differently. The interval domain can only

represent a range of consecutive values, whereas the congruence domain can only

express modulo relationships between variables. The authors point out that the

intersection of the two abstractions yields an expressive and more precise means

of abstraction. For example, suppose the set of non-negative integers x = {4, 6, 8}
is to be abstracted; the congruence x ≡2 0 expresses that x must be even, but

is unable to place lower and upper bounds upon x. On the other hand, the

interval x = [4, 8] can express the desired bounding, but must introduce spurious

numeric values to do so; namely the odd integers 5 and 7. Yet the intersection

of the two abstractions gives a precise abstraction, i.e. {0, 2, 4, 6, 8, 10, 12, . . .} ∩
{4, 5, 6, 7, 8} = {4, 6, 8}. Brauer uses this observation to infer more precise register

values for embedded AVR micro-controller code. Given a Boolean formula which

CHAPTER 7. RELATED WORK 152

characterises a sequence of AVR instructions, decision procedures based upon

SAT [72, 29] are used to compute separately: a) a lower and upper numeric bound

(an interval) for each register at each program point, and b) the congruent closure

describing register relationships at each program point. An operator reduce is

then used to compute the numeric intersection of the two abstractions. The

range analysis presented in Chapter 5 could have benefited from the introduction

of congruent information in this way, as the analysis was unable to account for

variable strides (see Section 5.6 on Page 102).

Instead of combining abstract domains, Simon and King [110] propose the

modification of the classical convex polyhedral domain to incorporate modulo be-

haviour into a relational analysis for C code. The authors observe that implicit

wrapping occurs when dynamic type casts occur in C and as a result subtle pro-

gramming errors can be introduced. Instead of reporting each integer overflow

as a potential error, which burdens the analyst who must decide if each case is

a false positive, a different approach is proposed. First, the concretisation map-

ping, which in this instance maps polyhedra to bit-vectors, is adjusted to perform

implicit wrapping. This means that the arithmetic operations of the abstract

semantics themselves need not be littered with explicit two’s complement consid-

erations. Only when the abstract state is concretised, does wrapping occur. There

is but one exception to this rule; numeric comparisons. Consider a polyhedral ab-

straction of a program state, P , and a guard x ≤ y. In the classic polyhedral

setting, the set of points in P which satisfy the guard is simply expressed by the

intersection of P with the half-space imposed by x ≤ y (denoted P u Jx ≤ yK).
This is correct for unbounded integers, but because computer integers wrap, sim-

ple half-space intersection is no longer correct. To model guards, Simon proposes

that the feasible space of P be partitioned into smaller polyhedra according to a

number of quadrants, where each quadrant represents a different wrapping mode.

By mapping each of the smaller polyhedra back into the valid integer range and

taking the convex hull, the authors arrive at a new polyhedron P ′, whose feasible

space describes the integer values that may arise after wrapping. It is now safe

to compute P ′ u Jx ≤ yK conventionally. By this method the consequences of a

mistaken integer overflow, for example an out of bounds array write, can be re-

ported, rather than the integer overflow itself, which is more likely to be dismissed

as a false positive. As with any polyhedral analysis, the success of the approach

CHAPTER 7. RELATED WORK 153

is predicated on the judicious application of widening [109, 76].

More recently, numeric modulo abstract domains have been proposed. The

circular linear progression (CLP), as proposed by Sen et al. [107], is one such

example. A CLP is a 3-tuple of the form (l, u, δ) where l is a start value, u is

an end value and δ is a step value. The interpretation of a CLP, C, is then

γ(C) = {ai = l + iδ | 0 ≤ i ≤ s}, where i ∈ Z and s is the smallest non-negative

integer such that as = u. For example, the CLP (0, 8, 6) when modelling unsigned

4-bit numbers corresponds to the concrete set {0, 2, 6, 8, 12}. Sen shows that the

set of CLPs forms a complete lattice and thus can be used directly within the

abstract interpretation framework. Although at first the CLP is reminiscent of

the strided interval [47], by contrast, integer wrap is inherent in the construction

of the CLP. The abstract semantics of an analysis for CLPs operate in two phases.

The first computes the update as though wrapping does not occur, then the second

computes the result of wrapping if it is deemed possible. The wrapping itself is

separated into disjoint cases similarly to as shown in Chapter 6.

Most recently, Navas et al. [90] devised a signedness-agnostic wrapping interval

analysis for LLVM IR (Low Level Virtual Machine Intermediate Representation).

The authors use a concrete domain of bit-vectors. The interpretation of a wrapped

interval is then:

γ(⊥) = ∅

γ(Lx, yM) =

{x, . . . , y} if x ≤ y

{0w, . . . , y} ∪ {x, . . . , 1w} otherwise

γ(>) = B

where 0w and 1w describe the w-bit vectors 〈0, 0, 0, . . . 〉 and 〈1, 1, 1, . . .〉 respec-

tively. Note that the case where x 6≤ y expresses a set which straddles the unsigned

overflow boundary. For example, L15, 1M for w = 4 expresses the set of vectors

{〈0, 0, 0, 0〉, 〈0, 0, 0, 1〉} ∪ {〈1, 1, 1, 1〉}. The same set abstracted by the classical

interval is [0, 15], which is much weaker by comparison. Abstract transfer func-

tions are then developed, including ones which take into consideration signedness

specific numeric comparisons.

Interestingly, the authors show that their wrapped interval coincides with a

CLP of step value one (δ = 1) and they further dismiss Sen’s claim, that the set

CHAPTER 7. RELATED WORK 154

of CLPs forms a lattice:

“They [Sen et al.] give detailed abstract operations and refer to their

abstract domain as a lattice. Setting the stride in their strided intervals

to 1 results in precisely the concept of wrapped intervals that we use

in this paper. Hence, as will become clear, their claim that the domain

of (wrapped) strided intervals has lattice structure is not correct.”

Note that this is not to say that the domains are not partially ordered. Never-

theless, the lack of lattice structure poses some rather irregular challenges. There

is no join (or meet) operator available, so to realise control flow joins Navas uses

a pseudo-meet operator, which unfortunately fails to be monotone. Furthermore,

the domain correspondence does not form a Galois connection. The upshot of

these quirks is that solving must deploy widening even though the abstract do-

main is finite.

The methods described in Chapters 5 and 6 are distinct from the work dis-

cussed here in that they explore the possibility of encoding modulo behaviours

into linear optimisation problems whilst avoiding the need for widening at all.

For now, the methods operate over the standard interval domain, however, future

work may find that it is also possible to integrate domains such as the wrapped

interval or the congruence into optimisation problems.

Chapter 8

Future Work and Conclusions

In summary, this thesis has surveyed the application of decision procedures to the

problem of static range analysis of binaries. The work was presented in contrast

to the widely used abstract interpretation framework and with emphasis on the

applications to security and verification; two topics of growing importance in the

industrial, military and governmental sectors.

8.1 Reflection upon Chapters 3 and 4

The first body of work showed how to abstract Boolean formulae as ranges to

overcome the so called “chicken and egg” problem of control flow graph (CFG)

recovery. This work was presented in two parts.

In Chapter 3, a method was shown which abstracts the satisfying models of a

Boolean formula as a range. The range could then be refined into an incrementally

more precise over-approximate set of Boolean satisfiability (SAT) models. This

was achieved by repeatedly calling a SAT solver to systematically find the mini-

mum and maximum satisfying models that, when interpreted as interval bounds,

correspond to a sound and tight under- or over-approximation of the satisfying

models. Experiments were conducted showing that the method was able to effi-

ciently recover sets of models that were representative of a set of indirect jump

targets.

Chapter 4 then showed how range and set abstraction could be applied to

sub-vectors of a SAT model (a register at a given program point) using a quan-

tified Boolean formula of the form ∀I. ∃T. f . Because range and set abstraction

155

CHAPTER 8. FUTURE WORK AND CONCLUSIONS 156

is underpinned by SAT, and because SAT cannot work directly on a quantified

formula containing universal quantifiers, the quantifiers must be eliminated. The

standard quantifier elimination (QE) methods are hindered by complexity issues,

so a new quantifier elimination method was proposed, based upon mathematical

optimisation. By this approach, it was shown that a cost function and block-

ing constraints could be used to minimise the amount of redundant computation

required. Experimental results were shown to back this claim.

It is particularly encouraging that ranges and sets can be automatically ab-

stracted from a Boolean formula. CPU instructions lend themselves well to

Boolean encoding, since for soundness and precision, bitwise details (such as the

status flags) must be captured. By the proposed method, the need for explicit

transfer functions is dispelled, as the abstraction is formulated directly from con-

crete Boolean formulae. Unlike traditional range analyses though, the method

is only able to infer a range or set of values for a specific register at a specific

program point. In the case where a program utilises multiple indirect jumps,

several independent analyses would be required to collect ranges for each of the

target registers at each indirect jump site. Although this was not an avenue that

was explored in this thesis, little extra engineering is required to accommodate

this. In fact, the same Boolean formula can be used repeatedly for each of the

desired jump targets; even the quantifier elimination stage need only occur once.

Only the sub-vector that is being minimised/maximised would change each time.

This does highlight the requirement for the method to be fast however. Unfortu-

nately the performance of the approach as a whole was not evaluated because the

quantifier elimination component of the analysis did not perform sufficiently well.

Instead, DDS [56] or Biere’s method [11] could be used as a replacement for the

QE algorithm proposed in Chapter 4. Assuming that by one of these approaches,

QE is no longer a performance issue, future work could see the evaluation of the

overarching method (range and set abstraction of sub-vectors) as a whole. If the

method fares well, then it could be used as part of the CFG recovery process to

incrementally grow an under-approximate control flow graph.

It is unfortunate that the performance of the QE method proposed in Chap-

ter 4 is below par. The likely cause of the poor performance is the discrete integer

variables that are used in the formulation of the mixed-integer linear programs

CHAPTER 8. FUTURE WORK AND CONCLUSIONS 157

(MILP) underpinning the approach. By using integer variables in a linear pro-

gram, the problem is promoted to NP-hard. There is no obvious way to remedy

the unsatisfactory solving times, but it is hoped that the work presented here will

inspire future work in this area. For example it may be possible to reformulate the

problem using a different decision procedure, such as SMT (Satisfiability Modulo

Theories). Another possible route would be to relax the MILPs to a series of plain

linear programs (without integer variables) in an approach more akin to that of

Chapter 5.

8.2 Reflection upon Chapters 5 and 6

Chapters 5 and 6 then assume that the CFG has been recovered by the methods

proposed before or otherwise. The remaining work explores the feasibility of deci-

sion procedures as a replacement for Kleene iteration in an abstract interpretation.

Again, the work is partitioned between two chapters.

Based upon the pioneering work of Rugina et al. [99], Chapter 5 showed that

sound range analysis of binary code can be undertaken as a series of linear opti-

misation problems. The method begins with a standard abstract interpretation

defined over intervals. Instead of solving the abstract semantics via Kleene it-

eration, a reformulation into an optimisation problem is proposed. To preserve

soundness, min and max terms are used when modelling conditional branching

constructs. This renders the optimisation problem non-linear, but it is shown

that the least solution (and therefore the best over-approximation) of the non-

linear constraints can be found by solving a series of simpler linear optimisation

problems. By this approach the min and max terms are decomposed into linear

constraints and so-called complementary constraints. The possible assignments to

the complementary constraints form a disjunctive search space, therefore the best

solution can be found through the repeated solving of linear relaxations of the

overarching non-linear optimisation problem. Although the worst case number

of LPs that need to be solved is high, heuristics were developed that in practice

allow the problems to be solved quickly and in a fraction of the worst case number

of LPs. Experimental results were presented to support this claim.

The work shown in Chapter 6 extends the range analysis proposed in Chapter 5

to allow the modelling of integer overflow scenarios. This was motivated by the

CHAPTER 8. FUTURE WORK AND CONCLUSIONS 158

fact that unforeseen integer overflows often have serious security implications.

The work was based upon the realisation that possibly overflowing arithmetic

operations can be expressed as piecewise linear updates. The update cases can

easily be encoded as linear constraints and then decision variables can be used to

select the case that should apply. Further, since min and max themselves can

be considered piecewise linear functions, the optimal solution to the overarching

MILP can be found without the need for complementary constraints or a binary

search. Control flow and reachability was also reformulated to take advantage of

decision variables, thereby allowing a uniform representation of an unreachable

block. Because signed an unsigned integers have differing overflow behaviours,

each interpretation of a register was modelled separately, and in doing so, more

optimisation variables were introduced. In the interest of reducing the number

of variables necessary, a type inference was devised to infer which signedness

interpretations are actually required on a per-program basis. Experimental results

suggested that the type inference does indeed improve the performance of the

analysis.

The biggest advantage of the proposed approaches is that, because Kleene

iteration is not used, fixpoint acceleration (such as widening) is not required. In-

stead the method uses an automated linear constraint solver as a black-box to

find the least-fixpoint directly. From an engineering standpoint this is beneficial,

as many good off-the-shelf linear constraint solvers exist. Also, the analyst need

not worry about the design of a widening operator, which is also an advantage.

From a performance standpoint, the analysis proposed in Chapter 5 shows that

decision procedures are at least competitive with traditional Kleene iteration. In

fact, when both heuristics are enabled, the method appears to solve the experi-

mental samples in constant time. Future work could try scaling the method up to

larger problems, perhaps in an inter-procedural setting, to see if the solving times

remain small.

The extension proposed in Chapter 6 suffers from poor performance, even when

the proposed type inference was enabled. Again, this can probably be attributed

to the use of integer optimisation variables. A different method could be used

that, instead of using explicit decision variables, uses a search tree similar to the

method presented in Chapter 5. In addition to the complementary constraints

that are used for min and max constraints, disjunctive constraints could be used

CHAPTER 8. FUTURE WORK AND CONCLUSIONS 159

to model the different overflow cases that arise in arithmetic operations. By this

approach, case selection is lifted outside of the decision procedure and into the

searching of the tree. Of course, this would mean that the search tree would no

longer be composed of binary decisions (complementary constraints), but rather of

n-ary decisions, depending upon the number of overflow modes that are modelled

for each operation. The use of heuristics would be paramount in this method, as

by increasing the depth and arity of the tree, the worst case number of LPs that

must be solved is substantially increased.

An alternative approach is to delegate overflow mode case selection to policy

iteration [30]. By this approach each potentially overflowing arithmetic operation

would correspond to a state, and a policy would assign each an overflow mode.

Although this appears to be a possible direction for future work, note that by re-

introducing a system of fixpoint equations, widening will once again be required,

which is counter-intuitive in the context of this thesis.

8.3 Final Remarks

All in all, the question of whether decision procedures are a worthy drop-in replace-

ment for traditional methods for binary analysis remains partially unanswered. It

has been shown that SAT and linear optimisation do offer the necessary level of

expression to formulate range analyses. Furthermore, when a decision procedure

is used to replace Kleene iteration, there is no need to specify a widening operator,

since a least-fixpoint can be found directly.

The main shortcomings with the methods presented were related to perfor-

mance. SAT and LP when used in isolation (Chapters 3 and 5) performed ad-

equately, but integer variables in optimisation problems have proven to be par-

ticularly problematic. This strongly motivates the development of new solving

strategies for integer linear programming (ILP). The discreteness of ILP makes it

a flexible platform; indeed it has been shown that even certain non-linear prop-

erties can be expressed by ILP. However, this power of expression comes at the

cost of poor performance. It could be argued that because ILP is NP-hard, it is

unlikely that better solving strategies could exist. On the other hand, the same

could be said for SAT, which too is NP-hard, but several good solving strategies

exist that perform very well for the majority of real-world SAT problems.

CHAPTER 8. FUTURE WORK AND CONCLUSIONS 160

Of course, there are many other aspects of binary analysis not considered in

this thesis that could benefit from the application of decision procedures. Most no-

tably, the methods presented only tracked general purpose integer registers. Many

instruction set architectures implement specialised fixed point and floating point

registers, such as the SSE and x87 registers found in Intel CPUs. Furthermore,

the modelling of overlapping registers was not considered. This is of particular

importance as there is interplay between the values that each register may assume.

For example, the 64-bit rax register found in x86-64 architectures shares its lower

32-bits with the 32-bit eax register. This means that, for example, any operation

that mutates eax will also mutate rax. Quirks like this are merely an artefact of

legacy, but compilers readily take advantage of the overlap to optimise code.

Another area that may be opportune for the application of decision procedures

is the modelling of memory contents. Whilst it was shown that inferring values

of memory offsets can be beneficial in a range analysis, the actual contents of the

memory cells themselves were not modelled. The ability to track the contents of

memory would undoubtedly give a much more precise range analysis, particularly

for execution environments using a stack-based calling convention or for register

starved CPU architectures. Some architectures, such as PIC, have but a single

general purpose register, meaning that values are constantly being swapped in and

out of memory. A memory model would also be useful for a side-effect analysis

which decides if a function respects callee save conventions. Before returning,

callee save functions are expected to restore certain registers to their original

state, as they were prior to the function call. Usually a compiler will temporarily

store the register values on the stack in the function prelude and restore them later

in the function epilogue, but the ability to verify this would be useful, especially

since compiler tool-chains often contain bugs.

Some areas of static binary analysis are likely to remain problematic for the

foreseeable future, with or without the support of decision procedures. Obfusca-

tion deployed in malware is one such example. Far fewer assumptions can be made

in this setting, as foul play is to be expected. Obfuscated binaries may conform to

no particular compilation model or calling convention, functions may not return,

instructions may be fabricated on the fly (as in self-modifying code), packers and

virtual machines may be embedded into the code and so on. Of course, malware

CHAPTER 8. FUTURE WORK AND CONCLUSIONS 161

writers make a conscious effort to make their binary code difficult to reverse. Un-

fortunately, the analysis of malware is likely to remain difficult in the long-term

because as new reverse engineering methods are published, malware authors are

likely to reactively adjust their tactics.

Appendix A

Proofs

A.1 Proofs for Chapter 2.

Definition 34 (Projection from L). The function projL : L × {x, y, z} → V

projects out the value-set of a single variable from a concrete state:

projL(l, var) =


{x | 〈x, y, z〉 ∈ l} if var = x

{y | 〈x, y, z〉 ∈ l} if var = y

{z | 〈x, y, z〉 ∈ l} if var = z

Definition 35 (Projection from M). The function projM : M × {x, y, z} → W

projects out the set of signs for a single variable from an abstract state:

projM(〈x, y, z〉, var) =


x if var = x

y if var = y

z if var = z

Definition 36 (Shorthand projection operator). Given an element d drawn from

either L or M , the shorthand syntax d[var] refers to either projL(d, var) or projM(d, var)

depending upon the type of d:

d[var] =

projL(d, var) if d is of type L

projM(d, var) if d is of type M

162

APPENDIX A. PROOFS 163

Definition 37 (Ordering on M in terms of projection). The ordering on M shown

in Definition 4 (Page 27) can be written in terms of projection:

〈x, y, z〉 vM 〈x′, y′, z′〉 ⇐⇒ x vW x′ ∧ y vW y′ ∧ z vW z′

≡

s vM t ⇐⇒ ∧
i∈{x,y,z} s[i] vW t[i]

Definition 38 (Ordering and domain operations of V).

s ⊆V s′ ⇐⇒ s ⊆ s′

s ∪V s′ , s ∪ s′
s ∩V s′ , s ∩ s′

Definition 39 (Correspondence between V and W).

αV : V → W αV (v) = {sign(j) | j ∈ v}
γW : W → V γW (w) = from sign(w)

Lemma 1. If an s ∈ L is a subset of a t ∈ L, then it follows that a single-variable

projection of a variable i from s is a subset of the projection of i from t, i.e.:

∀s ∈ L. ∀t ∈ L. s ⊆L t =⇒
∧

i∈{x,y,z}

s[i] ⊆V t[i]

Proof. Since ⊆L,⊆, it follows that any 〈x′, y′, z′〉 drawn from s must also be a

member of t. Therefore, the following properties hold:

x′ ∈ s[x] ∧ x′ ∈ t[x] y′ ∈ s[y] ∧ y′ ∈ t[y] z′ ∈ s[z] ∧ z′ ∈ t[z]

Because this holds for every 〈x′, y′, z′〉 ∈ s and because ⊆V,⊆, it follows that

s[x] ⊆V t[x] ∧ s[y] ⊆V t[y] ∧ s[z] ⊆V t[z].

Theorem 1. The correspondence between L and M is a Galois connection L −−−−→←−−−−
αL

γM

M if the correspondence between V and W is a Galois connection V −−−−→←−−−−
αV

γW
W .

Proof. The correspondence between L and M is a Galois connection if:

APPENDIX A. PROOFS 164

∀l ∈ L. ∀m ∈M. αL(l) vM m ⇐⇒ l ⊆L γM(m)

Using the definition of vM (Definition 37, Page 162), the above can be rewritten

as follows:

∀l ∈ L. ∀m ∈M.
∧

i∈{x,y,z}

(
αL(l)[i] vW m[i]

)
⇐⇒ l ⊆L γ(m)

Then, through the application of Lemma 1 (Page 163) and since αL(l)[i] = αV (l[i])

and γM(m)[i] = γW (m[i]), the above is equivalent to:

∀l ∈ L. ∀m ∈M.
∧

i∈{x,y,z}

(
αV (l[i]) vW m[i]

)
⇐⇒

∧
i∈{x,y,z}

(
l[i] ⊆V γW (m[i])

)
The above must be true if the correspondence between single-variable projections

of L and M forms a Galois connection, i.e.:

∀v ∈ V. ∀w ∈ W. αV (v) vW w ⇐⇒ v ⊆V γW (w)

Theorem 2. The correspondence between single variable projections of L and M

form a Galois connection, V −−−−→←−−−−
αV

γW
W , i.e. ∀v ∈ V. ∀w ∈ W. αV (v) vW w ⇐⇒

v ⊆V γW (w)

Proof. Starting with the forward direction:

∀v ∈ V. ∀w ∈ W. αV (v) vW w =⇒ v ⊆V γW (w)

By Definition 3 (Page 27) and Definition 38 (Page 163), we have vW,⊆ and

⊆V,⊆, so the above is equivalent to:

∀v ∈ V. ∀w ∈ W. αV (v) ⊆ w =⇒ ∀n ∈ v. n ∈ γW (w)

Then, via case analysis it can then be shown that the implication holds for an

arbitrary choice of n ∈ v:

Case n < 0: From the definition of αV (Definition 39, Page 163) it follows that

APPENDIX A. PROOFS 165

(−) ∈ αV (v). Then (−) ∈ w also, since αV (v) ⊆ w. Therefore, by Def-

inition 39 (Page 163), γW (w) ⊇ [−∞,−1], so it must be the case that

n ∈ γW (w).

Case n = 0: From the definition of αV it follows that 0 ∈ αV (v). Then 0 ∈ w

also, since αV (v) ⊆ w. Therefore γW (w) ⊇ {0}, so it must be the case that

n ∈ γW (w).

Case n > 0: From the definition of αV it follows that (+) ∈ αV (v). Then (+) ∈ w
also, since αV (v) ⊆ w. Therefore γW (w) ⊇ [1,+∞], so it must be the case

that n ∈ γW (w).

Because the implication holds for any arbitrary n ∈ v, it follows that the impli-

cation is true for all n ∈ v. Now the converse must be shown to hold:

∀v ∈ V. ∀w ∈ W. αV (v) vW w ⇐= v ⊆V γW (w)

By Definition 3 (Page 27) and Definition 38 (Page 163), we have vW,⊆ and

⊆V,⊆ , so the above is equivalent to:

∀v ∈ V. ∀w ∈ W. (∀s ∈ αV (v). s ∈ w ⇐= v ⊆ γW (w))

By cases it can be shown that the implication holds for any arbitrary s ∈ αV (v):

Case s = (−): From the definition of αV (Definition 39, Page 163), it follows that

∃n ∈ v. n < 0. Then since v ⊆ γW (w) it must be the case that n ∈ γW (w).

From the definition of γW (Definition 39, Page 163) there must be (−) ∈ w,

thus s ∈ w.

Case s = 0: From the definition of αV it follows that 0 ∈ v and since v ⊆ γW (w)

it follows that 0 ∈ γW (w). From the definition of γW there must be 0 ∈ w,

thus s ∈ w.

Case s = (+): From the definition of αV it follows that ∃n ∈ v. n > 0 and since

v ⊆ γW (w) it follows that n ∈ γW (w). From the definition of γW there must

be (+) ∈ w, thus s ∈ w.

Because the implication holds for any arbitrary s ∈ αV (v), it follows that the

implication is true for all s ∈ αV (v).

APPENDIX A. PROOFS 166

Corollary 1 (L −−−−→←−−−−
αL

γM
M , described on Page 29). The correspondence between L

and M forms a Galois connection, L −−−−→←−−−−
αL

γM
M .

Proof. Theorem 1 shows that the correspondence between L and M forms a Galois

connection iff the correspondence between single-variable projections forms a Ga-

lois connection. Theorem 2 then shows that indeed, the correspondence between

single-variable projections forms a Galois connection.

Lemma 2. Sign addition and subtraction are monotonic.

Proof. Consider sign addition, i.e. +
W

: W ×W → W (Definition 11, Page 31).

Since the the function is binary, an ordering is defined for pairs of W :

〈a, b〉 vW 2 〈c, d〉 ⇐⇒ a vW c ∧ b vW d

Then the following must be shown:

∀〈l1, r1〉 ∈ W 2. ∀〈l2, r2〉 ∈ W 2. 〈l1, r1〉 vW 2 〈l2, r2〉 =⇒ l1 +
W
r1 vW l2 +

W
r2

From the definitions of W 2 (above), vW (Definition 3, Page 27) and +
W

(Defini-

tion 11, Page 31), the above is equivalent to:

∀〈l1, r1〉 ∈ W 2. ∀〈l2, r2〉 ∈ W 2. l1 ⊆ l2 ∧ r1 ⊆ r2 =⇒ k1 ⊆ k2

where k1 =
⋃{s+′

W
t | s ∈ l1 ∧ t ∈ r1}

and k2 =
⋃{u+′

W
v | u ∈ l2 ∧ v ∈ r2}

Since l1 ⊆ l2 and r1 ⊆ r2, each element of {s +′
W
t | . . .} is also an element of

{u+′
W
v | . . .}. It follows that each element of k1 is also in k2, thus k1 ⊆ k2.

−
W

is monotonic by analogous reasoning.

Definition 40 (Single-variable update for a self map of M). Given a transfer

function f : M → M , the single-variable update of a variable v ∈ {x, y, z} is a

function f[v] : M → W such that f[v](m) = f(m)[v].

Lemma 3. An abstract transfer function f : M →M is monotonic if each single-

variable update of which f is composed is a monotonic function f[i] : M → W .

APPENDIX A. PROOFS 167

Proof. Recall that, to show a transfer function f : M → M is monotonic it must

be shown that:

∀a ∈M. ∀b ∈M. a vM b =⇒ f(a) vM f(b)

By the definition of vM (Definition 37, Page 162) and because f[i](m) = f(m)[i],

the above is equivalent to:

∀a ∈M. ∀b ∈M. a vM b =⇒
∧

i∈{x,y,z}

f[i](a) vW f[i](b)

The above is true if every single-variable update is monotonic, i.e. ∀i ∈ {x, y, z}. ∀s ∈
M. ∀t ∈M. s vM t =⇒ f[i](s) vW f[i](t).

Lemma 4. The projection of a variable v ∈ {x, y, z} from any m ∈M , i.e. m[v],

is monotonic.

Proof. It must be shown that:

∀v ∈ {x, y, z}. ∀a ∈M. ∀b ∈ m. a vM b =⇒ a[v] vW b[v]

Consider the case where v = x. By expansion of vM (Definition 37, Page 162)

the above is equivalent to:

∀a ∈M. ∀b ∈M.
∧

i∈{x,y,z}

(a[i] vW b[i]) =⇒ a[x] vW b[x]

Thus because the updates of y and z are independent of the update of x, it follows

that ∀a ∈ M. ∀b ∈ M. a[x] vW b[x] =⇒ a[x] vW b[x]. A similar argument holds

for when v = y and when v = z.

Theorem 3. The semantic equations shown in Section 2.2.3 (Page 29) are mono-

tonic.

Proof. The functional interpretation F ′i of each S ′i can be shown to be monotonic:

• F ′1(m) = >M : The function is constant and therefore monotonic.

APPENDIX A. PROOFS 168

• F ′2(m) = 〈m[x], {−},m[z]〉: According to Lemma 3 (Page 166), F ′2 is monotonic

if the following three functions are monotonic:

F ′2[x](m) = m[x] F ′2[y](m) = {−} F ′2[z](m) = m[z]

F ′2[x] and F ′2[z] are simple projections from m and are monotonic according

to Lemma 4 (Page 167). The remaining function, F ′2[y], is constant and

therefore monotonic.

• F ′3(m) = 〈m[x],m[y], {+}〉: Similar argument as for F ′2.

• F ′4(〈m,n〉〉) = 〈{0},m[y],m[z]〉 tM n: The calculation of the left- and right-hand

side of the join can be thought of as independent functions of the shape

M →M :

F ′4∗(m) = 〈{0},m[y],m[z]〉 F ′4∗∗(n) = n

The join of two elements drawn from a join-semilattice (which M is) is

monotonic. Therefore F ′4 itself is monotonic if the functions from which it is

composed are monotonic. To that end, F ′4∗ is monotonic through a similar

argument to that of F ′2. Then F ′4∗∗ is the ID mapping, which is monotonic.

• F ′5(m) = m, F ′6(m) = m: The functions are the ID mapping and are therefore

monotonic.

• F ′7(m) = 〈m[x] −W
m[y],m[y],m[z]〉: According to Lemma 3 (Page 166), the fol-

lowing functions must be shown to be monotonic:

F ′7[x](m) = m[x] −W
m[y] F ′7[y](m) = m[y] F ′7[z](m) = m[z]

The first is monotonic according to Lemma 2 (Page 166), then F ′7[y] and F ′7[z]

are monotonic projections (Lemma 4, Page 167).

• F ′8(m) = 〈m[x] uW {+},m[y],m[z]〉: According to Lemma 3 (Page 166), F ′8 is

monotonic if the following three functions are monotonic:

F ′8[x](m) = m[x] uW {+} F ′8[y](m) = m[y] F ′8[z](m) = m[z]

APPENDIX A. PROOFS 169

For the first, it must be shown that:

∀a ∈M. ∀b ∈M. a vM b =⇒ (a[x] uW {+}) vW (b[x] uW {+})

Using the definitions of vW , uW and vM (Definitions 3 and 37, Pages 27

and 162), this is equivalent to:

∀a ∈M. ∀b ∈M.
∧

i∈{x,y,z}

a[i] ⊆ b[i] =⇒ a[x] ∩ {+} ⊆ b[x] ∩ {+}

The above can be shown to hold via case analysis upon the existence or non-

existence of a (+) element in a[x] and b[x]. First assume (+) 6∈ a[x]∧(+) 6∈ b[x].

In this case, the right-hand side is ∅ ⊆ ∅. Now assume (+) 6∈ a[x]∧(+) ∈ b[x].

In this case, the right-hand side is ∅ ⊆ {+}. Now assume (+) ∈ a[x] ∧ (+) 6∈
b[x]. In this case, a[x] 6⊆ b[x], which is inconsistent with the left-hand side.

Finally assume (+) ∈ a[x] ∧ (+) ∈ b[x]. In this case, the-right hand side is

{+} ⊆ {+}.
F ′8[y] and F ′8[z] are monotonic projections (Lemma 4, Page 167).

• F ′9(m) = 〈m[x] +
W
m[z],m[y],m[z]〉: This function is monotonic through a similar

line of reasoning to that of F ′7.

• F ′10(〈m1,m2〉) = m1 tM m2: Since the join of any two elements drawn from a

join-semilattice (which M is) is monotonic, F ′10 is also monotonic.

• F ′11(m) = 〈m[x] uW {+},m[y],m[z]〉: This function is monotonic through a sim-

ilar line of reasoning to that of F ′8.

Definition 41 (Projection from K). Given a tuple 〈x, y, z〉 ∈ K, the function

projK : K × {x, y, z} → I gives the projection of a single variable:

projK(〈x, y, z〉, v) =


x if v = x

y if v = y

z if v = z

APPENDIX A. PROOFS 170

The shorthand notation given in Definition 36 (Page 162) is also extended so as

to accommodate K.

Definition 42 (Ordering on K in terms of projection). The ordering upon K

(Definition 14, Page 36) can be rewritten in terms of projection:

〈x, y, z〉 vK 〈x′, y′, z′〉 ⇐⇒ (x vI x′) ∧ (y vI y′) ∧ (z v z′)

≡

a vK b ⇐⇒ ∧
i∈{x,y,z} a[i] vI b[i]

Theorem 4. The domain correspondence between L and K is a Galois connection

(L −−−→←−−−
αL

γK
K) if the correspondence between single-variable projections is a Galois

connection (V −−−−→←−−−−
αV

γI
I).

Proof. The correspondence between L and K is a Galois connection when:

∀l ∈ L. ∀k ∈ K. αL(l) vK k ⇐⇒ l ⊆L γK(k)

By the definition of vK (Definition 42, Page 170) the above is equivalent to:

∀l ∈ L. ∀k ∈ K.
∧

j∈{x,y,z}

(αL(l)[j] vI k[j]) ⇐⇒ l ⊆L γK(k)

Then through the application of Lemma 1 (Page 163) and since αL(l)[j] = αV (l[j])

and γK(k)[j] = γI(k[j]), the following is also equivalent:

∀l ∈ L. ∀k ∈ K.
∧

j∈{x,y,z}

(αV (l[j]) vI k[j]) ⇐⇒
∧

j∈{x,y,z}

(l[j] ⊆V γI(k[j]))

Therefore, if it can be shown that the correspondence between V and I is a Galois

connection, i.e. ∀v ∈ V. ∀i ∈ I. αV (v) vI i ⇐⇒ v ⊆V γI(i), then the above

holds and the correspondence between L and K forms a Galois connection.

Theorem 5. The correspondence between single-variable projections of L and K

forms a Galois connection, V −−−−→←−−−−
αV

γI
I, i.e. ∀v ∈ V. ∀i ∈ I. αV (v) vI i ⇐⇒

v ⊆V γI(i)

Proof. The proposition can be shown to be true by case analysis upon v and i.

Case v = ⊥V ∧ i = ⊥I: Therefore, ⊥I vI ⊥I ⇐⇒ ⊥V ⊆V ⊥V .

APPENDIX A. PROOFS 171

Case v = ⊥V ∧ i 6= ⊥I: Therefore, ⊥I v i ⇐⇒ ⊥V ⊆V γI(i). Since no i ∈ I is

less than ⊥I and no v ∈ V is less than ⊥V , this must hold.

Case v 6= ⊥V ∧ i = ⊥I: Therefore, False ⇐⇒ False.

Case v 6= ⊥V ∧ i 6= ⊥I, i.e. v 6= ∅ ∧ i = [li, ui]: From the definition of αV and γI

(Definition 15, Page 36), the proposition is equivalent to:

∀v ∈ V. ∀[li, ui] ∈ I. [min(v),max(v)] vI [li, ui] ⇐⇒ v ⊆L {x ∈ Z | li ≤ x ≤ ui}

Then by the definitions of vI and ⊆V (Definitions 13 and 38, Pages 35

and 163), the above is equivalent to:

∀v ∈ V. ∀[li, ui] ∈ I. li ≤ min(v) ∧max(v) ≤ ui ⇐⇒ v ⊆ {x ∈ Z | li ≤ x ≤ ui}

Corollary 2. The correspondence between L and K forms a Galois connection

L −−−→←−−−
αL

γK
K.

Proof. Theorem 4 (Page 170) states that the correspondence between L and K

is a Galois connection if it can be shown that the correspondence between V and

I forms a Galois connection. Theorem 5 (above) shows that the correspondence

between V and I forms a Galois connection.

Lemma 5. Interval subtraction is monotonic.

Proof. Since interval subtraction is binary (−
I

: I × I → I), first a lifted ordering

is defined for pairs of intervals: 〈a, b〉 vI2 〈c, d〉 ⇐⇒ a vI c ∧ b vI d. Then it

must be shown that:

∀〈a, b〉 ∈ I2. ∀〈c, d〉 ∈ I2. 〈a, b〉 vI2 〈c, d〉 =⇒ a−
I
b vI c−I

d

Using the definitions of vI2 (above), vI (Definition 13, Page 35) and −
I

(Defini-

tion 17, Page 38), the above proposition can be shown to hold via case analysis

upon the emptiness of a, b, c and d:

Case a = b = c = d = ∅:

∅ vI ∅ ∧ ∅ vI ∅ =⇒ ∅−
I
∅ vI ∅ −I

∅

APPENDIX A. PROOFS 172

Case a = ∅ ∧ b = [lb, ub] ∧ c = ∅ ∧ d = [ld, ud]:

∅ vI ∅ ∧ [lb, ub] vI [ld, ud] =⇒ ∅−
I

[lb, ub] vI ∅ −I
[ld, ud]

∴ [lb, ub] vI [ld, ud] =⇒ ∅ vI ∅

Case a = ∅ ∧ b = [lb, ub] ∧ c = [lc, uc] ∧ d = [ld, ud]:

∅ vI [lc, uc] ∧ [lb, ub] vI [ld, ud] =⇒ ∅−
I

[lb, ub] vI [lc, uc]−I
[ld, ud]

∴ [lb, ub] vI [ld, ud] =⇒ ∅ vI [lc, uc]−I
[ld, ud]

Case a = [la, ua] ∧ b = ∅ ∧ c = [lc, uc] ∧ d = [ld, ud]: Similarly.

Case a = [la, ua] ∧ b = ∅ ∧ c = [lc, uc] ∧ d = ∅: Similarly.

Case a = b = ∅ ∧ c = [lc, uc] ∧ d = [ld, ud]: Similarly.

Case a = [la, ua] ∧ b = [lb, ub] ∧ c = [lc, uc] ∧ d = [ld, ud]:

[la, ua] vI [lc, uc] ∧ [lb, ub] vI [ld, ud] =⇒ [la, ua]−
I

[lb, ub] vI [lc, uc]−I
[ld, ud]

∴ lc ≤ la ∧ ua ≤ uc ∧ ld ≤ lb ∧ ub ≤ ud =⇒ [la − ub, ua − lb] vI [lc − ud, uc − ld]

∴ lc ≤ la ∧ ua ≤ uc ∧ ld ≤ lb ∧ ub ≤ ud =⇒ lc − ud ≤ la − ub ∧ ua − lb ≤ uc − ld
∴ lc ≤ la ∧ ua ≤ uc ∧ ld ≤ lb ∧ ub ≤ ud =⇒ lc − la ≤ ud − ub ∧ ua − uc ≤ lb − ld

Then since lc ≤ la it follows that lc− la must be ≤ 0, and because ub ≤ ud it

follows that ud − ub ≥ 0. Further, since ua ≤ uc it follows that ua − uc ≤ 0,

and because ld ≤ lb it follows that lb − ld ≥ 0. Thus the proposition is

satisfied:

lc − la︸ ︷︷ ︸
≤0

≤ ud − ub︸ ︷︷ ︸
≥0

∧ ua − uc︸ ︷︷ ︸
≤0

≤ lb − ld︸ ︷︷ ︸
≥0

Any other case is inconsistent with the assumption 〈a, b〉 vI2 〈c, d〉, therefore

making the proposition true.

Definition 43 (Single-variable update for a self map of K). Given a transfer

function f : K → K, the single-variable update of a variable v ∈ {x, y, z} is a

function f[v] : K → I such that f[v](m) = f(m)[v].

Lemma 6. A transfer function f : K → K is monotonic if each single-variable

update is a monotonic function f[v] : K → I.

APPENDIX A. PROOFS 173

Proof. A transfer function f : K → K is monotonic when:

∀a ∈ K. ∀b ∈ K. a vK b =⇒ f(a) vK f(b)

By the definition of vK (Definition 42, Page 170), and since f[v](k) = f(k)[v], the

above is equivalent to:

∀a ∈ K. ∀b ∈ K. a vK b =⇒
∧

v∈{x,y,z}

f[v](a) vI f[v](b)

Thus, if the single-variable updates are monotonic, i.e. ∀v ∈ {x, y, z}. ∀s ∈
K. ∀t ∈ K. s vK t =⇒ f[v](s) vI f[v](t), then the above also holds.

Lemma 7. The projection of a variable v ∈ {x, y, z} from any k ∈ K is mono-

tonic, i.e. k[v] is monotonic:

∀v ∈ {x, y, z}. ∀s ∈ K. ∀t ∈ K. s vK t =⇒ s[v] vI t[v]

Proof. Consider the case where v = x. Recall that in this instance s[x] and t[x] are

synonyms for projK(k, x) and projK(k, x). Therefore, by Definition 41 (Page 169)

the proposition is equivalent to:

∀〈x, y, z〉 ∈ K. ∀〈x′, y′, z′〉 ∈ K. 〈x, y, z〉 vK 〈x′, y′, z′〉 =⇒ x vI x′

By the definition of vK (Definition 14, Page 36), the above is equivalent to:

∀〈x, y, z〉 ∈ K. ∀〈x′, y′, z′〉 ∈ K. x vI x′ ∧ y vI y′ ∧ z vI z′ =⇒ x vI x′

Thus the projection of x from a k ∈ K is monotonic. Projections of y and z are

monotonic by symetric reasoning.

Theorem 6. The semantic equations shown in Section 2.3.2 (Page 37) are mono-

tonic.

Proof. The functional interpretation F ′i of each S ′i can be shown to be monotonic:

• F ′1(k) = >K: The function is constant and is therefore monotonic.

APPENDIX A. PROOFS 174

• F ′2(〈p, q, r〉, 〈s, t, u〉) = 〈[5, 5], q, r〉 tK 〈s, t, u〉: The function can be thought of

as the join of two smaller independent functions:

F ′2∗(〈p, q, r〉) = 〈[5, 5], q, r〉 F ′2∗∗(〈s, t, u〉) = 〈s, t, u〉

The join of two elements drawn from a join-semilattice (which indeed K is)

is monotonic. Therefore tK : K×K → K is monotonic, meaning that F ′2 is

monotonic if it can be shown that F ′2∗ and F ′2∗∗ are monotonic. F ′2∗∗ is the

ID mapping and is trivially monotonic. According to Lemma 6 (Page 172),

F ′2∗ is monotonic if the following functions are monotonic:

F ′2∗[x](〈p, q, r〉) = [5, 5] F ′2∗[y](〈p, q, r〉) = q F ′2∗[z](〈p, q, r〉) = r

The first of the three functions is constant and thus monotonic. The re-

maining two functions are simple projections from K, which according to

Lemma 7, are monotonic.

• F ′3(〈x, y, z〉) = 〈x uI [1,+∞], y, z〉: According to Lemma 6, it must be shown

that the following functions are monotonic:

F ′3[x](〈x, y, z〉) = x uI [1,+∞] F ′3[y](〈x, y, z〉) = y F ′3[z](〈x, y, z〉) = z

F ′3[x] is monotonic because the meet of two elements drawn from a meet-

semilattice (which indeed I is) is monotonic. F ′3[y] and F ′3[z] are simple pro-

jections and are thus monotonic according to Lemma 7 (Page 173).

• F ′4(〈x, y, z〉) = 〈x−
I

[1, 1], y, z〉: According to Lemma 6 (Page 172), it must be

shown that the following functions are monotonic:

F ′4[x](〈x, y, z〉) = x−
I

[1, 1] F ′4[y](〈x, y, z〉) = y F ′4[z](〈x, y, z〉) = z

The first is monotonic according to Lemma 5 (Page 171), then F ′4[y] and F ′4[z]

are simple projections and are thus monotonic by Lemma 7 (Page 173).

• F ′5(〈x, y, z〉) = 〈x uI [−∞, 0], y, z〉: The function is monotonic via a similar ar-

gument to that of F ′3.

APPENDIX A. PROOFS 175

Theorem 7. OK (defined on Page 43) is a correct widening operator:

∀a ∈ K. ∀b ∈ K. a vK (a OK b)
∧

∀a ∈ K. ∀b ∈ K. b vK (a OK b)

Proof. Let a = 〈x, y, z〉 and b = 〈x′, y′, z′〉. By the definition of OK (Definition 20,

Page 43) the proposition is equivalent to:

∀〈x, y, z〉 ∈ K. ∀〈x′, y′, z′〉 ∈ K. 〈x, y, z〉 vK 〈x OI x
′, y OI y

′, z OI z
′〉 ∧

∀〈x, y, z〉 ∈ K. ∀〈x′, y′, z′〉 ∈ K. 〈x′, y′, z′〉 vK 〈x OI x
′, y OI y

′, z OI z
′〉

Then by the definition of vK (Definition 14, Page 36):

(∀〈x, y, z〉 ∈ K. ∀〈x′, y′, z′〉 ∈ K. x vI (x OI x
′) ∧ y vI (y OI y

′) ∧ z vI (z OI z
′)) ∧

(∀〈x, y, z〉 ∈ K. ∀〈x′, y′, z′〉 ∈ K. x′ vI (x OI x
′) ∧ y′ vI (y OI y

′) ∧ z′ vI (z OI z
′))

It is taken for granted that Cousot’s interval widening operator OI is correct [32],

therefore the above holds because:

∀s ∈ I. ∀t ∈ I. s vI (s OI t)
∧

∀s ∈ I. ∀t ∈ I. t vI (s OI t)

A.2 Proofs for Chapter 4.

Theorem 8 (The occurrence and polarity flags described on Page 72 are correctly

constrained). The constraint si = oi−2pi correctly relates si ∈ {−1, 0, 1} with the

occurrence flag oi ∈ {0, 1}, and the polarity flag pi ∈ {0, 1}:

si = oi − 2pi =⇒ (si = −1 ⇐⇒ oi = 1 ∧ pi = 1) ∧
(si = 0 ⇐⇒ oi = 0) ∧
(si = 1 ⇐⇒ oi = 1 ∧ pi = 0)

Proof. The following truth table enumerates all possible combinations of assign-

ments to oi, pi and si within their domains. The table also indicates whether each

assignment satisfies the premise si = oi − 2pi:

APPENDIX A. PROOFS 176

oi pi si oi − 2pi si = oi − 2pi

0 0 -1 0 7

0 0 0 0 X

0 0 1 0 7

0 1 -1 -2 7

0 1 0 -2 7

0 1 1 -2 7

1 0 -1 1 7

1 0 0 1 7

1 0 1 1 X

1 1 -1 -1 X

1 1 0 -1 7

1 1 1 -1 7

By discarding the cases which do not satisfy the premise, it is easy to see that

the remaining three cases satisfy the conclusion: (si = −1 ⇐⇒ oi = 1 ∧ pi =

1) ∧ (si = 0 ⇐⇒ oi = 0) ∧ (si = 1 ⇐⇒ oi = 1 ∧ pi = 0):

oi pi si oi − 2pi si = oi − 2pi

0 0 0 0 X

1 0 1 1 X

1 1 -1 -1 X

A.3 Proofs for Chapter 6

Theorem 9. Given a decision variable δi ∈ {0, 1} and two expressions x, y ∈ Z
where x and y differ by at most M − 1:

((x ≤ y) ⇐⇒ (δi = 1)) =⇒ ((x ≤ y +M · (1− δi)) ∧ (x+M · δi ≥ y + 1))

Proof. There are two cases under which the assumption is satisfied. First assume

(x ≤ y) ∧ (δi = 1) holds. In this case (x+M ≥ y + 1), which is true because x

and y differ by at most M − 1. Now assume that (x > y) ∧ (δi = 0). In this case

(x ≤ y +M) ∧ (x ≥ y + 1). The left hand side of the conjunction is true because

APPENDIX A. PROOFS 177

x and y differ by at most M − 1, then the right hand side of the conjunction is

true because for integers (x > y) =⇒ (x ≥ y + 1).

Theorem 10. Given a decision variable δi ∈ {0, 1} and two expressions x, y ∈ Z
where x and y differ by at most M − 1:

(x ≤ y +M · (1− δi)) ∧ (x+M · δi ≥ y + 1)) =⇒ ((x ≤ y) ⇐⇒ (δi = 1))

Proof. The proposition can be shown to be true by case analysis upon δi. First

assume δi = 0 holds. Then ((x ≤ y + M) ∧ (x ≥ y + 1)) =⇒ ((x ≤ y) ⇐⇒
False). Because x and y differ by at most M − 1, it follows that (x ≤ y +M) is

always satisfied. This leaves (x ≥ y + 1) =⇒ ((x ≤ y) ⇐⇒ False), which is

satisfied because (x ≥ y + 1) =⇒ (x 6≤ y).

Now assume δi = 1 holds. Then (x ≤ y) ∧ (x + M ≥ y + 1)) =⇒ (x ≤ y).

Since x and y differ by at most M − 1, it follows that (x+M ≥ y + 1) is always

satisfied. This leaves (x ≤ y) =⇒ (x ≤ y).

Corollary 3 (Equivalence for the decision phase, described on Page 120, Chap-

ter 6.). From Theorems 9 and 10, it follows that given a decision variable δi ∈
{0, 1} and two expressions x, y ∈ Z where x and y differ by at most M − 1:

((x ≤ y) ⇐⇒ (δi = 1)) ⇐⇒ ((x ≤ y +M · (1− δi)) ∧ (x+M · δi ≥ y + 1))

Theorem 11. Given a decision variable δi ∈ {0, 1} and two expressions x, y ∈ Z
such that the difference between x and y is at most M − 1:

((δi = 1) =⇒ (x ≤ y)) =⇒ (x ≤ y +M(1− δi))

Proof. There are two cases under which the assumption is satisfied. First assume

δi = 0 holds. In this case x ≤ y + M . This must be satisfied because x and y

differ by at most M − 1. Now assume that (δi = 1) ∧ (x ≤ y). In this case the

implication is trivially satisfied.

Theorem 12. Given a decision variable δi ∈ {0, 1} and two expressions x, y ∈ Z
such that the difference between x and y is at most M − 1:

(x ≤ y +M(1− δi)) =⇒ ((δi = 1) =⇒ (x ≤ y))

APPENDIX A. PROOFS 178

Proof. The proposition can be shown to be correct by case analysis upon δi. First

suppose δi = 0. In this case x ≤ y +M =⇒ True. Now suppose δi = 1. In this

case x ≤ y =⇒ x ≤ y.

Corollary 4 (Equivalence used in the impose phase, described on Page 121,

Chapter 6). By Theorems 11 and 12, it follows that given a decision variable,

δi ∈ {0, 1} and two expressions x, y ∈ Z, such that the difference between x and y

is at most M − 1: ((δi = 1) =⇒ (x ≤ y)) ⇐⇒ (x ≤ y +M(1− δi)).

Theorem 13 (Encoding of exit reachability, described on Page 123, Chapter 6).

Given three decision variables δi, δm, δn ∈ {0, 1}:

((δm = 1∧ δn = 1) ⇐⇒ (δi = 1)) ≡ ((δm + δn− 2 · δi ≤ 1)∧ (δm + δn− 2 · δi ≥ 0))

Proof. The following truth table enumerates all possible combinations of assign-

ments to the decision variables δm, δn and δi. The table also indicates whether the

right hand side of the equivalence is satisfied:

δm δn δi δm + δn − 2δi 0 ≤ δm + δn − 2δi ≤ 1

0 0 0 0 X

0 0 1 -2 7

0 1 0 1 X

0 1 1 -1 7

1 0 0 1 X

1 0 1 -1 7

1 1 0 2 7

1 1 1 0 X

By discarding all assignments that do not satisfy 0 ≤ δm+δn−2δi ≤ 1, this leaves

four cases:

δm δn δi δm + δn − 2δi 0 ≤ δm + δn − 2δi ≤ 1

0 0 0 0 X

0 1 0 1 X

1 0 0 1 X

1 1 1 0 X

APPENDIX A. PROOFS 179

The only remaining case where δi = 1 is where δm = 1 and δn = 1 and vice

versa. Therefore ((δm = 1 ∧ δn = 1) ⇐⇒ (δi = 1)) ≡ ((δm + δn − 2 · δi ≤
1) ∧ (δm + δn − 2 · δi ≥ 0)).

Appendix B

Bibliography

[1] National Vulnerability Database. http://nvd.nist.gov.

[2] A. Adjé, S. Gaubert, and E. Goubault. Coupling Policy Iteration with Semi-

definite Relaxation to Compute Accurate Numerical Invariants in Static

Analysis. In ESOP, volume 6012 of LNCS, pages 23–42. Springer, 2010.

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison Wesley, 2nd edition, 2006.

[4] A. W. Appel. Modern Compiler Implementation in Java. Cambridge Uni-

versity Press, 2002.

[5] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library:

Toward a Complete Set of Numerical Abstractions for the Analysis and

Verification of Hardware and Software Systems. SCP, 72(1–2):3–21, 2008.

[6] G. Balakrishnan and T. Reps. DIVINE: Discovering Variables in Executa-

bles. In VMCAI, volume 4349 of LNCS, pages 1–28. Springer, 2007.

[7] G. Balakrishnan and T. W. Reps. WYSINWYX: What You See Is Not

What You eXecute. TOPLAS, 32(6), 2010.

[8] S. Bardin and P. Herrmann. Structural Testing of Executables. In ICST,

pages 22–31. IEEE, 2008.

[9] E. Barrett and A. King. Range and Set Abstraction using SAT. ENTCS,

267(1):17–27, 2010.

180

APPENDIX B. BIBLIOGRAPHY 181

[10] E. Barrett and A. King. Range Analysis of Binaries with Minimal Effort.

In FMICS, volume 7437 of LNCS, pages 93–107. Springer, 2012.

[11] A. Biere. Resolve and Expand. In Theory and Applications of Satisfiability

Testing, volume 3542 of LNCS, pages 59–70. Springer, 2005.

[12] A. Biere, M. Heule, H. Van Maaren, and T. Walsh. Handbook of Satisfiabil-

ity. IOS Press, 2009.

[13] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,

D. Monniaux, and X. Rival. Design and Implementation of a Special-

Purpose Static Program Analyzer for Safety-Critical Real-Time Embedded

Software. In The Essence of Computation, LNCS, pages 85–108. Springer,

2002.

[14] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,

D. Monniaux, and X. Rival. A Static Analyzer for Large Safety-Critical

Software. In PLDI, volume 38, pages 196–207. ACM, 2003.

[15] O. Bouissou, Y. Seladji, and A. Chapoutot. Abstract Fixpoint Computa-

tions with Numerical Acceleration Methods. ENTCS, 267(1):29–42, 2010.

[16] J. Brauer and A. King. Automatic Abstraction for Intervals using Boolean

Formulae. In SAS, volume 6337 of LNCS, pages 167–183. Springer, 2010.

[17] J. Brauer and A. King. Transfer Function Synthesis without Quantifier

Elimination. Logical Methods in Computer Science, 8(3), 2012.

[18] J. Brauer, A. King, and S. Kowalewski. Range Analysis of Microcontroller

Code Using Bit-Level Congruences. In FMICS, volume 6371 of LNCS, pages

82–98. Springer, 2010.

[19] J. Brauer, A. King, and J. Kriener. Existential Quantification as Incremental

SAT. In CAV, volume 6806 of LNCS, pages 191–207. Springer, 2011.

[20] J. Brauer, B. Schlich, T. Reinbacher, and S. Kowalewski. Stack Bounds

Analysis for Microcontroller Assembly Code. In Workshop on Embedded

Systems Security, pages 5:1–5:9. ACM, 2009.

APPENDIX B. BIBLIOGRAPHY 182

[21] R. Bryant, D. Kroening, J. Ouaknine, S. A. Seshin, O. Strichman, and

B. Brady. Deciding Bit-Vector Arithmetic with Abstraction. In TACAS,

volume 4424 of LNCS, pages 358–372. Springer, 2007.

[22] R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-

Decision Diagrams. ACM Computing Surveys, 24(3):318, 1992.

[23] C. Cadar, V. Ganesh, P. M. Pawlowski, D .L. Dill, and D. R. Engler. EXE:

Automatically Generating Inputs of Death. In CCS, pages 322–335. ACM,

2006.

[24] K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T. Henzinger, and J. Pals-

berg. Stack Size Analysis for Interrupt-Driven Programs. In Static Analysis,

volume 2694 of LNCS, pages 1075–1075. Springer, 2003.

[25] L. Chen, A. Miné, J. Wang, and P. Cousot. Linear Absolute Value Relation

Analysis. In ESOP, volume 6602 of LNCS, pages 156–175. Springer, 2011.

[26] V. Chvátal. Linear Programming. W. H. Freeman and Company, 1983.

[27] C. Cifuentes and M. Van Emmerik. Recovery of Jump Table Case State-

ments from Binary Code. SCP, 40(2-3):171–188, 2001.

[28] E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Pro-

grams. In TACAS, volume 2988 of LNCS, pages 168–176. IEEE, 2004.

[29] M. Codish, V. Lagoon, and P. J Stuckey. Logic programming with satisfia-

bility. Theory and Practice of Logic Programming, 8:121–128, 2008.

[30] A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A Pol-

icy Iteration Algorithm for Computing Fixed Points in Static Analysis of

Programs. In CAV, volume 6174, pages 462–475. Springer, 2005.

[31] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model

for Static Analysis of Programs by Construction or Approximation of Fix-

points. In POPL, pages 238–252. ACM, 1977.

[32] P. Cousot and R. Cousot. Comparing the Galois Connection and Widen-

ing/Narrowing Approaches to Abstract Interpretation. In PLILP, volume

631 of LNCS, pages 269–295. Springer, 1992.

APPENDIX B. BIBLIOGRAPHY 183

[33] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Why

does Astrée Scale Up? Formal Methods in System Design, 35(3):229–264,

2009.

[34] P. Cousot, R. Cousot, and L. Mauborgne. A Scalable Segmented Decision

Tree Abstract Domain. In Time for Verification: Essays in Memory of Amir

Pnueli, volume 6200 of LNCS, pages 72–95. Springer, 2010.

[35] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints

Among Variables of a Program. In POPL, pages 84–96. ACM, 1978.

[36] Y. Crama and P. L. Hammer. Boolean Functions: Theory, Algorithms, and

Applications. Cambridge University Press, 2011.

[37] M. Davis and H. Putnam. A Computing Procedure for Quantification The-

ory. Journal of the ACM, 7(3):201–215, 1960.

[38] B. De Sutter, B. De Bus, K. De Bosschere, P. Keyngnaert, and B. Demoen.

On the static analysis of indirect control transfers in binaries. In PDPTA,

volume 2, pages 1013–1019. CSREA Press, 2000.

[39] R. Dechter. Bucket Elimination: a Unifying Framework for Processing Hard

and Soft Constraints. Constraints, 2(1):51–55, 1997.

[40] R. Dechter and I. Rish. Directional resolution: The davis-putnam proce-

dure, revisited. In Knowledge Representation and Reasoning, pages 134–145.

Morgan Kaufmann, 1994.

[41] D. Doan. Commercial Off the Shelf (COTS) Security Issues and Approaches.

Master’s thesis, Naval Postgraduate School, Monterey, California, 2006.

www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA456996.

[42] T. Durden. Automated Vulnerability Auditing in Machine Code. Phrack

Magazine, #64, 2007.

[43] N. Eén and N. Sörensson. An Extensible SAT-Solver. In SAT, volume 2919

of LNCS, pages 502–518. Springer, 2004.

[44] N. Een and N. Sörensson. MiniSat. www.minisat.se, 2010.

APPENDIX B. BIBLIOGRAPHY 184

[45] M. Fähndrich and F. Logozzo. Static Contract Checking with Abstract

Interpretation. In Formal Verification of Object-Oriented Software, volume

6528 of LNCS, pages 10–30. Springer, 2011.

[46] A. Flexeder, M. Petter, and H. Seidl. Side-Effect Analysis of Assembly

Code. In SAS, volume 6887 of LNCS, pages 77–94. Springer, 2011.

[47] G. Balakrishnan and T. Reps. WYSINWYX: What You See is Not What

You Execute. TOPLAS, 32(6):23:1–23:84, 2010.

[48] J. Garrido, D. Brosnan, J. A. de la Puente, A. Alonso, and J. Zamorano.

Analysis of WCET in an experimental satellite software development.

In International Workshop on Worst-Case Execution Time Analysis, vol-

ume 23 of OpenAccess Series in Informatics (OASIcs), pages 81–90. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012.

[49] S. Gaubert, E. Goubault, A. Taly, and S. Zennou. Static Analysis by Policy

Iteration on Relational Domains. In ESOP, volume 4421 of LNCS, pages

237–252. Springer, 2007.

[50] T. Gawlitza and H. Seidl. Precise Fixpoint Computation Through Strategy

Iteration. In ESOP, volume 4421 of LNCS, pages 300–315. Springer, 2007.

[51] T. Gawlitza and H. Seidl. Precise Relational Invariants Through Strategy

Iteration. In Computer Science and Logic, volume 4646 of LNCS, pages

23–40. Springer, 2007.

[52] T. M. Gawlitza, H. Seidl, A. Adjé, S. Gaubert, and É. Goubault. Abstract

Interpretation Meets Convex Optimization. Journal of Symbolic Computa-

tion, 47(12):1416–1446, 2012.

[53] P. Glasscock. An 80x86 to C Reverse Compiler. Master’s thesis, Computing

Laboratory, Cambridge University, 1998.

[54] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Ran-

dom Testing. In PLDI, pages 213–223. ACM, 2005.

[55] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated Whitebox Fuzz

Testing. In NDSS. The Internet Society, 2008.

APPENDIX B. BIBLIOGRAPHY 185

[56] E. Goldberg and P. Manolios. Quantifier elimination by dependency se-

quents. In FMCAD, pages 34–43. IEEE, 2012.

[57] D. Gopan and T. W. Reps. Lookahead Widening. In CAV, volume 4144 of

LNCS, pages 452–466. Springer, 2006.

[58] E. Goubault, S. Le Roux, J. Leconte, L. Liberti, and F. Marinelli. Static

Analysis by Abstract Interpretation: A Mathematical Programming Ap-

proach. ENTCS, 267(1):73–87, 2010.

[59] P. Granger. Static Analysis of Arithmetical Congruences. International

Journal of Computer Mathematics, 30(3-4):165–190, 1989.

[60] N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées

par les Variables d’un Programme. PhD thesis, Thèse de 3ème cicle

d’informatique, 1979.

[61] W. H. Harrison. Compiler Analysis for the Value Ranges of Varibles. IEEE

Transactions on Software Engineering, SE-3(3):243–250, 1977.

[62] C. Hathhorn, M. Becchi, W. L. Harrison, and A. M. Procter. Formal Seman-

tics of Heterogeneous CUDA-C: A Modular Approach with Applications. In

SSV, volume 102 of EPTCS, pages 115–124. arXiv.org, 2012.

[63] J. N. Hooker. A quantitative approach to logical inference. Decision Support

Systems, 4(1):45–69, 1988.

[64] J. N. Hooker. Logical Inference and Polyhedral Projection. In Computer

Science Logic, volume 626 of LNCS, pages 184–200. Springer, 1992.

[65] J. N. Hooker. Solving the Incremental Satisfiability Problem. Journal of

Logic Programming, 15(1&2):177–186, 1993.

[66] P. Jackson. Computing Prime Implicates. In Proceedings of the 1992 ACM

Annual Conference on Communications, CSC, pages 65–72. ACM, 1992.

[67] R. J. Jiang. Quantifier Elimination via Functional Composition. In CAV,

volume 5643, pages 383–397. Springer, 2009.

APPENDIX B. BIBLIOGRAPHY 186

[68] D. Kapur. Automatically Generating Loop Invariants using Quantifier Elim-

ination. In International Conference on Applications of Computer Algebra,

volume 05431 of Dagstuhl Seminar Proceedings. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, 2004.

[69] M. Karr. Affine Relationships Among Variables of a Program. Acta Infor-

matica, 6:133–151, 1976.

[70] J. Kinder and H. Veith. Precise Static Analysis of Untrusted Driver Binaries.

In FMCAD, pages 43–50. IEEE, 2010.

[71] J. Kinder, F. Zuleger, and H. Veith. An Abstract Interpretation-Based

Framework for Control Flow Reconstruction from Binaries. In VMCAI,

volume 5403 of LNCS, pages 214–228. Springer, 2009.

[72] A. King and H. Søndergaard. Automatic Abstraction for Congruences. In

VMCAI, volume 5944 of LNCS, pages 197–213. Springer, 2010.

[73] V. Kotlyar and M. Moudgill. Detecting overflow detection. In Conference on

Hardware/software codesign and system synthesis, CODES+ISSS’04, pages

36–41. ACM, 2004.

[74] D. Kroening and O. Strichman. Decision Procedures. Springer, 2008.

[75] S. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techniques for Fast Pred-

icate Abstraction. In CAV, volume 4144 of LNCS, pages 424–437. Springer,

2006.

[76] L. Lakhdar-Chaouch, B. Jeannet, and A. Girault. Widening with Thresholds

for Programs with Complex Control Graphs. In ATVA, volume 6996 of

LNCS, pages 492–502. Springer, 2011.

[77] J. Lang, P. Liberatore, and P. Marquis. Propositional Independence:

Formula-Variable Independence and Forgetting. CoRR, abs/1106.4578,

2011.

[78] K. R. M. Leino and F. Logozzo. Using Widenings to Infer Loop Invariants

Inside an SMT Solver, Or: A Theorem Prover as Abstract Domain. In

WING, pages 70–84. Microsoft, 2007.

APPENDIX B. BIBLIOGRAPHY 187

[79] G. Li and G. Gopalakrishnan. Scalable SMT-based verification of GPU

kernel functions. In Foundations of Software Engineering, FSE, pages 187–

196. ACM, 2010.

[80] C. Linn and S. Debray. Obfuscation of Executable Code to Improve Resis-

tance to Static Disassembly. In CCS, pages 290–299. ACM, 2003.

[81] B. Lisper, A. Ermedahl, D. Schreiner, J. Knoop, and p. Gliwa. Practical

Experiences of Applying Source-Level WCET Flow Analysis on Industrial

Code. In Leveraging Applications of Formal Methods, Verification, and Val-

idation, volume 6416 of LNCS, pages 449–463. Springer, 2010.

[82] L. Mauborgne and X. Rival. Trace Partitioning in Abstract Interpreta-

tion Based Static Analyzers. In ESOP, volume 3444 of LNCS, pages 5–20.

Springer, 2005.

[83] K. L. McMillan. Interpolation and SAT-Based Model Checking. In CAV,

volume 2725 of LNCS, pages 1–13. Springer, 2003.

[84] K. L. McMillan. Applications of Craig Interpolants in Model Checking. In

TACAS, volume 3440 of LNCS, pages 1–12. Springer, 2005.

[85] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound

Matrices. In PADO, volume 2053 of LNCS, pages 155–172. Springer, 2001.

[86] A. Miné. The Octagon Abstract Domain. Higher-Order Symbolic Compu-

tation, 19(1):31–100, 2006.

[87] M. Müller-Olm and H. Seidl. Analysis of Modular Arithmetic. TOPLAS,

29(5), 2007.

[88] A. Mycroft. Type-Based Decompilation. In ESOP, volume 1576, pages

208–223. Springer, 1999.

[89] G. J. Myers. The Art of Software Testing. Wiley InterScience, 1979.

[90] J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Signedness-

Agnostic Program Analysis: Precise Integer Bounds for Low-Level Code.

In R. Jhala and A. Igarashi, editors, APLAS, volume 7705 of LNCS, pages

115–130. Springer, 2012.

APPENDIX B. BIBLIOGRAPHY 188

[91] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo

Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure

to DPLL (T). Journal of the ACM, 53(6):937–977, 2006.

[92] D. A. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form

Translation. Journal of Symbolic Computation, 2(3):293–304, 1986.

[93] W. V. Quine. A Way to Simplify Truth Functions. The American Mathe-

matical Monthly, 62(9):627–631, 1955.

[94] A. Ramesh, G. Becker, and N. Murray. CNF and DNF Considered Harmful

for Computing Prime Implicants/Implicates. Journal of Automated Reason-

ing, 18:337–356, 1997.

[95] J. Regehr and U. Duongsaa. Deriving Abstract Transfer Functions for An-

alyzing Embedded Software. In ACM SIGPLAN/SIGBED Conference on

Language, Compilers, and Tool Support for Embedded Systems, LCTES’06,

pages 34–43. ACM, 2006.

[96] T. Reps, M. Sagiv, and G. Yorsh. Symbolic Implementation of the Best

Transformer. In VMCAI, volume 2937 of LNCS, pages 3–25. Springer, 2004.

[97] T. W. Reps, G. Balakrishnan, and J. Lim. Intermediate-Representation

Recovery from Low-Level Code. In PEPM, pages 100–111. ACM, 2006.

[98] E. Rodriguez-Carbonell and D. Kapur. An Abstract Interpretation Ap-

proach for Automatic Generation of Polynomial Invariants. In SAS, volume

3148 of LNCS, pages 280–295. Springer, 2004.

[99] R. Rugina and M. C. Rinard. Symbolic bounds analysis of pointers, array

indices, and accessed memory regions. TOPLAS, 27:185–235, 2005.

[100] A. Rybalchenko and V. Sofronie-Stokkermans. Constraint Solving for Inter-

polation. Journal of Symbolic Computation, 45:1212–1233, 2010.

[101] P. Samuelson and S. Scotchmer. The Law and Economics of Reverse Engi-

neering. Yale Law Journal, 111:1575, 2001.

APPENDIX B. BIBLIOGRAPHY 189

[102] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable Analysis of

Linear Systems Using Mathematical Programming. In VMCAI, volume 3385

of LNCS, pages 25–41. Springer, 2005.

[103] R. A. Sayle. A Superoptimizer Analysis of Multiway Branch Code Gener-

ation. In GCC Developers Summit, pages 103–116. Linux Symposium Inc.,

2008.

[104] B. Schlich. Model Checking of Software for Microcontrollers. ACM Trans-

actions in Embedded Computing Systems, 9:1–27, 2010.

[105] B. Schlich, J. Löll, and S. Kowalewski. Application of Static Analyses for

State Space Reduction to Microcontroller Assembly Code. In FMICS, vol-

ume 4916, pages 21–37. Springer, 2007.

[106] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.

[107] R. Sen and Y. N. Srikant. Executable Analysis using Abstract Interpretation

with Circular Linear Progressions. In International Conference on Formal

Methods and Models for Codesign, MEMCODE, pages 39–48. IEEE, 2007.

[108] J. Seward and N. Nethercote. Using Valgrind to Detect Undefined Value

Errors with Bit-Precision. In USENIX Annual Technical Conference, pages

17–30. USENIX, 2005.

[109] A. Simon and A. King. Widening Polyhedra with Landmarks. In APLAS,

volume 4279 of LNCS, pages 166–182. Springer, 2006.

[110] A. Simon and A. King. Taming the Wrapping of Integer Arithmetic. In

SAS, volume 4634 of LNCS, pages 121–136. Springer, 2007.

[111] A. Simon, A. King, and J. M. Howe. Two Variables per Linear Inequality

as an Abstract Domain. In LOPSTR, volume 2664 of LNCS, pages 71–89.

Springer, 2002.

[112] A. Singh. Identifying Malicious Code Through Reverse Engineering. Ad-

vances in Information Security. Springer, 2009.

[113] Z. Su and D. Wagner. A Class of Polynomially Solvable Range Constraints

for Interval Analysis without Widenings. TCS, 345(1):122–138, 2005.

APPENDIX B. BIBLIOGRAPHY 190

[114] S. Thompson and A. Mycroft. Bit-level Partial Evaluation of Synchronous

Circuits. In PEPM, pages 29–37. ACM, 2006.

[115] G. S. Tseitin. On the Complexity of Derivation in Propositional Calcu-

lus. Studies in Constructive Mathematics and Mathematical Logic, 2(115-

125):10–13, 1968.

[116] G. Weissenbacher. Program Analysis with Interpolants. PhD thesis, Mag-

dalen College, 2010.

[117] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A New Incremental

Satisfiability Engine. In Design Automation Conference, pages 542–545,

2001.

[118] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,

G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,

P. Puschner, J. Staschulat, and P. Stenström. The Worst-Case Execution-

Time Problem – Overview of Methods and Survey of Tools. ACM Transac-

tions in Embedded Computing Systems, 7(3):36:1–36:53, 2008.

[119] R. Wille, G. Fey, and R. Drechsler. Building Free Binary Decision Diagrams

Using SAT Solvers. Facta Universitatis-Series: Electronics and Energetics,

20(3):381–394, 2007.

[120] Y. Xie and A. Aiken. Saturn: A Scalable Framework for Error Detection

using Boolean Satisfiability. TOPLAS, 29(3), 2007.

[121] A. Zaks, Z. Yang, I. Shlyakhter, F. Ivancic, S. Cadambi, M. K. Ganai,

A. Gupta, and P. Ashar. Bitwidth Reduction via Symbolic Interval Analysis

for Software Model Checking. IEEE TACAD, 27(8):1513–1517, 2008.

[122] Q. Zhong and N. Edward. Security Control COTS Components. IEEE

Computer Society, 31:67–73, 1998.

