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Abstract
Language composition approaches have traditionally suf-
fered from poor performance. In this paper we hypothesise
that meta-tracing provides a means to compose independent
language interpreters while retaining the performance lev-
els of each. To study this approach, we compose Python and
Prolog interpreters to form Unipycation. We present a case
study of its use and a suite of micro-benchmarks which give
us some understanding of its cross-language performance.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—code generation, incremental com-
pilers, interpreters, run-time environments

1. Introduction
Traditionally, most software projects have used a single pro-
gramming language to implement all their aspects. While
this often works well, it can also be frustrating, forcing some
aspects to be written in less than ideal languages. We believe
that this compromise is inevitable when software developers
can only easily write systems in a single language.

Language composition allows users to mix languages
(programming languages and / or domain specific lan-
guages) together in a fine-grained manner, so that each part
of a problem can be expressed using the most appropriate
language. The need for this has been articulated, in dif-
ferent ways, since at least the late 60s (e.g. [12, 22, 27]).
While several approaches have tackled parts of the vision
(e.g. [9, 10, 24, 29]), no approach can be said to have caught
on. There are many reasons for this, but in this paper we fo-
cus on one: the difficulty of creating an efficient composition
of language run-times.

At the moment, a language composition implementer
has only one realistic choice: to translate each language in
the composition down to a single base language (e.g. C,
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JVM bytecode). If all the languages in the composition are
broadly similar, this can work well. In most cases, however,
the languages have sufficiently different semantics, mean-
ing that optimising them all simultaneously is impossible.
Such a situation is a semantic mismatch in language imple-
mentation terms [7]. Examples include dynamically typed
languages hosted upon HotSpot. Despite HotSpot’s won-
derful performance on statically typed languages, and de-
spite the introduction of invokedynamic, translating such
languages to JVM bytecode often leads to disappointing
performance. Jython – Python on the JVM – is generally
slower than CPython – the ‘classic’ interpreter-only version
of Python.

We hypothesise that this long-standing problem can be
overcome by composing together meta-tracing interpreters.
Meta-tracing allows one to write an interpreter from which
a tracing JIT compiler is automatically generated. The per-
formance of the resulting VMs significantly outperforms
interpreter-only VMs [7]—PyPy, a meta-tracing Python
VM is significantly faster than CPython (and, by extension,
Jython). Composing together meta-tracing compatible inter-
preters such that their individual performance remains un-
affected is relatively easy. The challenge is to have the two
interpreters interact – to exchange data, call functions, and
so on – and to do so in an efficient manner.

In this paper we present Unipycation, a simple composi-
tion of PyPy – a fast Python VM – with Pyrolog [6] – a fairly
fast Prolog VM – as a way of beginning to test our thesis. We
chose Python and Prolog not only because we have existing
interpreters for them, but because they have substantially dif-
ferent semantics. If our hypothesis can be validated, it will
only be by picking tricky cases such as this. Unipycation is a
concrete example of interpreter composition that is intended
to highlight the issues involved. Many challenges remain un-
tackled: Unipycation, for example, currently defers issues of
syntactic composition to other projects. We do not pretend
to have all the solutions yet—the only thing we are sure of
is that we have not yet identified all of the problems.

The contributions of this paper are as follows:

• We present a prototype of Unipycation, the first compo-
sition of meta-tracing interpreters.
• We evaluate Unipycation’s suitability for writing com-

posed programs via a small case study.
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• We evaluate the performance of Unipycation with a suite
of micro-benchmarks.

This paper is structured as follows. After discussing prelim-
inaries we present a case study of a Connect Four imple-
mentation with a Python GUI and a Prolog game-playing
engine as a way of demonstrating that Unipycation’s com-
position is indeed usable (Section 4). We then show the de-
sign of Unipycation, including the APIs it exposes to allow
Python and Prolog code to call each other (Section 5). We
then present 7 synthetic language composition benchmarks,
each of which has 4 further variations, to understand the
performance of cross-language interactions in Unipycation
(Section 6). Finally, we discuss our subjective experiences
of Unipycation and possible next routes (Section 8).

For full repeatability, Unipycation, the case study, and the
benchmarks can be downloaded from:

http://soft-dev.org/pubs/files/unipycation/

2. Meta-tracing
Meta-tracing takes an interpreter and creates from it a tracing
JIT compiler [2, 5, 28, 32]. The resulting VM contains both
the interpreter and the tracing JIT compiler. At run-time, user
programs running in the VM begin their execution in the in-
terpreter. When a ‘hot loop’ in the user program is encoun-
tered, the actions of the interpreter are traced (i.e. recorded),
optimised, and then converted to machine code. Subsequent
executions of the loop then use the fast machine code version
rather than the slow interpreter. Guards are left behind in the
machine code so that if execution needs to diverge from the
path recorded by the trace, execution can safely fall back to
the interpreter.

Due to the particular nature of interpreters, meta-tracing
is able to create tracing JIT compilers automatically. Whether
it operates on bytecode or ASTs, an interpreter is fundamen-
tally a large loop: ‘load the next instruction, perform the
associated actions, go back to the beginning of the loop’.
To generate a tracing JIT, the language implementer anno-
tates the interpreter to inform the meta-tracing system when
a loop1 at position pc (program counter) has been encoun-
tered; the meta-tracing system then decides if the loop has
been encountered often enough to start tracing. The annota-
tion also tells the meta-tracing system that execution of the
program at position pc is about to begin and that if a ma-
chine code version is available, it should be used; if it is not,
then the standard interpreter will be used. Although tracing
is not a new idea (see [1, 18]), traditional implementations
required manually creating both the interpreter and trace
compiler, whereas meta-tracing fully automates the latter.

The main extant meta-tracing language is RPython, a
statically-typed subset of Python which translates to C.
RPython’s type system is similar to Java’s, extended with

1 Loops are often, though not exclusively, program counter jumps with a
negative index.

further analysis e.g. to assure that list indices are not neg-
ative. Users can influence the analysis with assert state-
ments, but otherwise it is fully automatic. Unlike seem-
ingly similar languages (e.g. Slang [21] or PreScheme [25]),
RPython is more than just a thin layer over C: it is, for ex-
ample, fully garbage collected and has several high-level
datatypes (e.g. lists and dictionaries).

3. Prolog background
We assume that most readers have a working knowledge
of a mainstream ‘imperative’ language such that they can
understand the simple uses of Python used in this paper.
However, we can not reasonably make the same assumption
about Prolog. This section serves as a brief introduction to
Prolog for unfamiliar readers (see e.g. [8] for more details).
Those familiar with Prolog will notice a distinct imperative
flavour to our explanations. This is intentional, given the
paper’s likely audience, but nothing we write should be
considered as precluding the logic-based view of Prolog.

Prolog is a rule-based logic programming language whose
programs consist of a database of predicates which is then
queried. A predicate is related to, but definitely not the same
as, the traditional programming language concept of a func-
tion. Predicates can be loosely thought of as overloaded
pattern-matching functions that can generate a stream of
solutions (including no solutions at all). Given a database, a
user can then query it to ascertain the truth of an expression.

Prolog supports the following data types:

Numeric constants Integers and floats.
Atoms Identifiers starting with a lowercase letter e.g. chair.
Terms Composite structures beginning with a lowercase let-

ter e.g. vector(1.4, 9.0). The name (e.g. vector) is
the term’s functor, the items within parantheses its argu-
ments. The arguments of a term should not be confused
with the arguments of a function; terms can be thought of
as named tuples, where the arguments are merely data.

Variables Identifiers beginning with either an uppercase let-
ter (e.g. Person) or an underscore. The variable _ is the
anonymous variable. Variables are not just named storage
places, as in imperative languages, but denote unknown
values that may become known later. They can occur at
any point within a data structure. For example the term
vector(31, Y) has a second argument whose value is
not yet known. A concrete value can be bound to such a
variable later.

Lists Lists are made out of cons cells, which are simply
terms of the functor ’.’. Since lists are common, and
the ’.’ syntax rather verbose, lists can be expressed
using a comma separated sequence of elements enclosed
inside square brackets. For example, the list [1,2,3] is
equivalent to ’.’(1, ’.’(2, ’.’(3, []))). Further, a
list can be denoted in terms of its head and tail, for
example [1 | [2, 3]] is equivalent to [1,2,3]. A list
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with a variable as its tail, such as [1 | X], is called a
partial list.

To demonstrate some of these concepts, consider the Pro-
log rule database shown in Listing 1. The edge predicate de-
scribes a directed graph which may, for example, represent
a transit system such as the London Underground. The path

predicate accepts four arguments and describes valid paths
of length MaxLen or under, from the node From to the node
To, as the list Nodes. In this example, a, b, . . . , g are atoms.
The expression edge(a, c) defines a predicate called edge

which is true when the arguments a and c are passed. The
expression path(From, To, MaxLen, Nodes, 1) is a call
to the path predicate passing as arguments, four variables
and a integer constant. Finally, [From | Ahead] is a partial
list.

1 edge(a, c). edge(c, b). edge(c, d). edge(d, e).

2 edge(b, e). edge(c, f). edge(f, g). edge(e, g).

3 edge(g, b).

4

5 path(From, To, MaxLen, Nodes) :-

6 path(From, To, MaxLen, Nodes, 1).

7

8 path(Node, Node, _, [Node], _).

9 path(From, To, MaxLen, [From | Ahead ], Len) :-

10 Len < MaxLen, edge(From, Next),

11 Len1 is Len + 1,

12 path(Next, To, MaxLen, Ahead, Len1).

Listing 1. A Prolog rule database.

Queries can either succeed or fail. For example, running
the query edge(c, b) (“is it possible to transition from node
c to node b”?) against the above database succeeds, but
edge(e, f) (“is it possible to transition from node e to node
f?”) fails. When a query contains a variable, Prolog searches
for solutions, binding values to variables. For example, the
query edge(f, Node) (“which node can I transition to from
f?”) binds Node to the atom g. Queries can produce multiple
solutions. For example, path(a, g, 7, Nodes) (“Give me
paths from a to g of maximum length 7”) finds several
bindings for Nodes: [a, c, b, e, g], [a, c, d, e, g],
[a, c, f, g], and [a, c, f, g, b, e, g].

Solutions are enumerated by recording choice points
where more than one rule is applicable. If a user requests
another solution, or if an evaluation path fails, Prolog back-
tracks to the most recent choice point and explores alterna-
tive search paths. In the above example, edge(From, Next)

(line 10) can introduce a choice point, as there can be several
ways of transitioning from one node to the next.

4. Case study
To demonstrate a wider-ranging use case for our composi-
tion of Python and Prolog, this section describes a small
case study implemented in Unipycation. Connect Four is a
well known strategy game, first released in 1974. The game

Figure 1. The Connect 4 GUI using Tkinter.

involves two players (red and yellow), and a vertically stand-
ing grid-like board, divided into 6 rows and 7 columns. Play-
ers take turns dropping one of their coloured counters into a
column. The first player to place 4 counters in a contiguous
horizontal, vertical, or diagonal line wins.

Connect Four makes an interesting case study for lan-
guage composition, as a reasonable implementation has two
distinct aspects: a user interface and an AI player. Without
wishing to start a war between fans of either language, we
humbly suggest that Python and Prolog are well suited to one
of the aspects, but not the other. An imperative language like
Python is well suited to dealing with the presentational side
of the game (i.e. a graphical user interface), whereas Prolog
is well suited to expressing the behaviour of an AI player.
The Python component consists of a simple Tk GUI via the
tkinter module. As with most GUI frameworks, Tk is event
driven, and is a natural fit within Python. The GUI is under
190 LoC. The AI player, on the other hand, is well suited to
implementation in Prolog. The AI player uses the minimax
method (accelerated with alpha-beta pruning) to compute the
best move [8]; it is around 170 lines of Prolog code.

The basic operation of the case study is that the Python
part of the program performs all interactions with the users,
stores the state of the board, and invokes the Prolog AI
player. After every move, the Python part divides the state of
the board into two lists reds and yellows, encoding counter
positions as Prolog terms (e.g. a counter at row one, column
two is encoded as c(1, 2)). Unipycation’s Python → Prolog
interface is then used to query the Prolog has_won predicate
with these two lists and a final unbound variable. If the
Prolog interpreter finds a binding to variable, then the game
has finished, and the last player to move has won.

If no player has won, and the next player to move is
the AI opponent, the Python part hands over to the Pro-
log AI player. To decide a good move, the computer oppo-
nent uses a bounded-depth minimax solver [30, 31] imple-
mented efficiently using alpha-beta pruning [16]; we used
Bratko’s alpha-beta framework as a reference implementa-
tion [8, p. 586]. This approach considers the game as a tree
of potential moves, where each move is characterised by the
positions of the counters (again as two lists) and whose move
it is next. Each move has an associated cost which is used as
a basis for deciding a good move. We model Connect 4 as
a zero sum game, so one player will aim to minimise the
cost, whilst the other will aim to maximize the cost. The
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alpha-beta framework requires us to define three predicates:
one to inform the framework which player is minimising
and which player is maximising, one to calculate all possi-
ble next moves, and one to calculate the cost of each move.
Given these predicates, the alpha-beta framework can make
an informed decision about the best move for the computer
opponent. Once the best move has been chosen, it is passed
back to Python and the game state is updated to reflect the
AI player’s move.

We discuss our experiences of using Unipycation for the
case study in Section 8.

5. Unipycation
5.1 Constituent interpreters
To compose Python and Prolog, we first need meta-tracing
interpreters for each. Fortunately – and not entirely coin-
cidentally – RPython interpreters exist for both languages.
PyPy [26] is a fast RPython interpreter for Python. It is
fully compatible with CPython (v2.7.3) and is currently the
fastest Python VM [7]. Pyrolog [6] is a fairly fast interpreter
for Prolog. The two systems have different goals: PyPy is
an industrial strength VM, whereas Pyrolog is an extended
effort to understand meta-tracing’s applicability to a logic
programming language. With the normal caution to readers
about reading too much into Lines of Code (LoC) counts,
PyPy is approximately 35KLoC and Pyrolog 6KLoC. Cap-
turing the performance of VMs in a single number is ar-
guably even more dangerous than LoC codes. Using differ-
ent benchmarks can substantially change one’s perception
of a VM’s speed, and it is easy to mislead. However, we
feel that unfamiliar readers need to have an idea of roughly
where each VM sits in the overall performance landscape to
understand why we have chosen PyPy and Pyrolog. With
that warning in mind, PyPy 2.1 is approximately 6 times
faster than CPython on a wide range of benchmarks. Bench-
marking in Prolog is less developed than in languages such
as Python, and we must be even more cautious than nor-
mal when considering Pyrolog’s performance. Relative to
SWI Prolog, current benchmarking suggests Pyrolog’s per-
formance is on an approximate par with it. As this suggests,
Pyrolog is not as mature a VM as PyPy, though its perfor-
mance is still reasonably competitive.

5.2 Design
Unipycation can be thought of both as the glue which binds
together PyPy and Pyrolog, and the resulting composed in-
terpreter itself. Around 600LoC were added to PyPy and
Pyrolog to make Unipycation a reality. Currently, Unipyca-
tion hosts Pyrolog within PyPy, meaning that all Unipyca-
tion programs start with the execution of Python code; “raw”
Prolog code must be either embedded in Python strings or
loaded from a separate file.2

2 In a related strand of work, we are creating an editor which will allow a
more harmonious syntactic language composition [15].

There are multiple ways in which one could compose
Python and Prolog. Our working assumption is that com-
positions which do not interfere with existing expectations
about how each language works are most likely to be accept-
able. Therefore, neither the syntax or semantics of Python
or Prolog were modified in the composition. We also sus-
pect that compositions which minimise the gap between lan-
guages are more likely to be acceptable. We have thus tried,
whenever possible, to reuse familiar idioms in each language
to represent the other. This requires careful thought, particu-
larly for Prolog features (e.g. unbound variables) which have
no direct Python equivalent.

We do not claim that Unipycation is a perfect composi-
tion, but it is fairly consistent and simple. In the rest of this
section, we discuss the decisions and challenges faced in its
design and implementation.

5.3 Data type conversions
To allow PyPy and Pyrolog to communicate, language spe-
cific data types must be mapped between each interpreter
and converted where appropriate. Each interpreter has a hi-
erarchy of RPython classes to represent the data types that
it can operate on. Unipycation adds functions to each inter-
preter to convert data crossing the language boundary; one
function is added for each type in each direction.

Some conversions are simple: Prolog integers, big inte-
gers, and floats are converted to Python ints, longs, and
floats respectively and vice versa. Similarly, Prolog atoms
are translated to Python strings and vice versa (note that Py-
rolog does not implement Prolog strings). The underlying
value of such data types can thus be easily wrapped in the
appropriate data type class within the other interpreter.

Prolog terms passed to Python are more interesting. They
are wrapped in a special Python class Term from which the
functor and arguments can be accessed. The Term class lazily
forwards accesses to the underlying Prolog term (recursively
calling the conversion function). This means that passing
a Prolog term to Python is efficient, and that users only
pay data conversion costs for the data they access. When a
Python Term is passed back to Prolog, the underlying term
is trivially unwrapped. Analogously, Prolog variables are
translated to Python objects of type Var (see Section 5.4).

Although Unipycation defines conversions for all Prolog
data types passed to Python, Python users can define their
own classes and Unipycation can not possibly define con-
versions for all of them. We therefore need a fallback mech-
anism to allow Python objects of unknown type to be passed
to, and through, Prolog code. Our simple solution is to wrap
all such objects in a ‘black box’: Pyrolog can pass such black
boxes around, and call methods on them, but can not di-
rectly manipulate their contents. Passing a black box back
to Python causes it to be unwrapped.
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5.4 Calling Prolog code from Python
Unipycation programs begin with execution of normal Py-
thon code; the Prolog interpreter can be called via the uni

module. Continuing the path finding example, assume that
the rule database of Listing 1 is stored in the file path.pl

and that we wish to execute, from Python, the query path(b,

To, 4, Nodes) (“Starting at node b, where can we get To
by visiting at most 4 Nodes?”). Listing 2 shows the re-
sulting code. First the uni module is imported (line 1). A
Prolog engine is then instantiated (line 3). This exposes
each predicate in the rule database (which in this case
is loaded from file) via the engine’s db attribute. Queries
can then be made by calling predicates either: directly
e.g. engine.db.path(...) in which case they are expected
to provide a single solution and an exception is raised if one
is not found; or indirectly via their iter method, which can
be called to return 0 or more solutions as an iterator (lines
4 and 6). Unbound variables in a query are represented with
the None object (Python’s equivalent of null), meaning that
paths("b", None, 4, None) on line 6 is equivalent to the
Prolog query paths(b, To, 4, Nodes). The bindings are
then returned, in order, as a Python tuple. In this case, the
two bindings are returned (line 6) and printed out (line 7).
The output of the program is shown in Listing 3.

1 from uni import Engine

2

3 engine = Engine.from_file("path.pl")

4 paths = engine.db.path.iter

5

6 for (to, nodes) in paths("b", None, 4, None):

7 print("To %s via %s" % (to, nodes))

Listing 2. The Python to Prolog interface.

1 To b via [’b’]

2 To e via [’b’, ’e’]

3 To g via [’b’, ’e’, ’g’]

4 To b via [’b’, ’e’, ’g’, ’b’]

Listing 3. The output of the program shown in Listing 2.

Interfacing the execution models of the two interpreters
is not trivial. PyPy is a naive recursive bytecode interpreter,
whereas Pyrolog uses continuation-passing style. In fact, Py-
rolog uses two continuations: one for success and one for
failure [6] using a trampoline (which is a common way
to implement backtracking). Thus when calling the iter-
variant of a Prolog predicate, Unipycation returns an in-
stance of an iterator class that captures the state of the Py-
rolog continuations. When the Python code asks the iter-
ator for the next element, it induces backtracking on the
stored Prolog continuations and runs Prolog from there. If
that yields a new Prolog solution, it is returned to Python,
otherwise the iterator is depleted.

5.4.1 Using variables and terms explicitly
While the query interface presented so far works well in
most cases, it is not fully general. Unbound variables must
appear at the top level of a query, making paths.iter("b",

"e", 5, ["b", "e", None]) invalid. Forbidding nested
Nones means the basic query interface does not have to fully
traverse every query, making this aspect O(1) no matter the
size of the query. Similarly, the eager conversion of lists
makes representing Prolog partial lists (nested cons cells
with an undefined tail) such as [1, 2 | X] impossible: a run-
time exception is raised when a partial list is returned to
Python.

To cope with such cases, Unipycation users can model
variables and terms explicitly. Consider the Prolog query
path(a, To, 5, [a, c | OtherNodes]) which uses a par-
tial list and a nested variable. Listing 4 demonstrates how
terms and variables can be used explicitly to represent this
query. First we import the relevant types (line 1) and manu-
ally create Prolog variables (line 5). We then build the partial
list as a chain of cons terms (line 6). We then build a Term

to represent the query (line 7) before explicitly calling the
Prolog engine’s query_iter function to produce all solu-
tions (line 9). Unbound variables must be explicitly passed
to query_iter to avoid having to search composite expres-
sions. The result of query_iter is a dictionary of bindings.
Prolog lists returned via this interface are left as chains of
cons cells (using Term instances).

1 from uni import Engine, Term, Var

2

3 # ... Instantiate engine as before...

4

5 (to, tail) = (Var(), Var())

6 part_list = Term(’.’, ["a", Term(’.’, ["c", tail])])

7 query = Term(’path’, ["a", tail, 5, part_list])

8

9 for sol in engine.query_iter(query, [to, tail]):

10 print("to=%s, tail=%s" % (sol[to], sol[tail]))

11

12 print("done")

Listing 4. Querying with explicit terms and variables.

Although the explicit query interface is sometimes the
only possible route, careful thought can reduce the need
to use its somewhat verbose idioms. “Wrapper predicates”
added to the Prolog rule database can subsume many use
cases. For example to avoid having to write Listing 4, one
could add the predicate shown in Listing 5 to the Prolog
database and call it using the simple query interface as
e.db.path_via(a, None, [a, c], None).

1 path_via(From, To, MaxLen, Prefix, OtherNodes) :-

2 append(Prefix, OtherNodes, FullList),

3 path(From, To, MaxLen, FullList).

Listing 5. Avoiding explicit terms and variables.
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5.4.2 Dynamically generating rules from Python
Not only do the individual interpreters allow meta-pro-
gramming within themselves, but Unipycation allows meta-
programming across the language boundary. Suppose, in
our running example, that our graph represents tube stations
on London’s underground. Stations open and close (e.g. for
maintenance work) and we would like to alter the graph dy-
namically. Python code can use the assertz Prolog builtin
to insert new rules into the database. Listing 6 shows Python
code which adds an edge from a to g in the Prolog database.

1 edge = engine.terms.edge("a", "g")

2 engine.db.assertz(edge)

Listing 6. Adding rules to the database using assertz.

Using this technique, it is not difficult to imagine a path
finder which uses Python to dynamically acquire map up-
dates through a web JSON API and updates the Prolog
database.

5.5 Calling Python code from Prolog
Just as Python code can call Prolog code, Unipycation also
enables the reverse. Deciding which names to expose to
Prolog is more complex than deciding which names to ex-
pose to Python. Similar to the db attribute, the python inter-
face (which masquerades as a Prolog module) uses run-time
meta-programming to lookup names and make their values
available to Prolog. Users can explicitly make names avail-
able by passing a dictionary to the Prolog engine when it
is initialised. If no match for a name is found, the Python
builtins are then searched, making it easy for Prolog code to
call builtins such as dict, len and the like. Since Prolog has
no syntax for common Python operations such as looking up
an item in a list, the contents of Python’s operator module
are also exposed. Prolog code which wants to execute Z =

l[i], for example, can call python:getitem(l, i, Z).
To make method calls syntactically palatable, we over-

load Prolog’s module lookup operator : so that a list L, for
example, can be sorted in Prolog via L:sort(_). As this
suggests, calls to Python are realised by passing one extra
parameter than normal. The result then unifies the extra pa-
rameter with the result of the Python call. If a function does
not return a result, or the user wants to ignore it, the anony-
mous variable _ can be passed as the final argument in nor-
mal Prolog style, as is the case with sort. Multiple : indi-
rections can be chained together provided that the chain ul-
timately results in a function or method call e.g. the Python
call os.path.exists("hosts") can be expressed in Prolog
as python:os:path:exists(hosts, Exists).

Python functions and methods which return iterators be-
come Prolog choice points. These are encapsulated in a new
kind of Prolog failure continuation, and then pumped for fur-
ther solutions when backtracking occurs. The successive el-
ements of the iterator are the potential solutions of the call to

Python, the result of which is unified with the last argument
of the call one by one.

Continuing the running example, the ability to call from
Prolog back to Python means that the representation of the
edges of the graph can be stored in a Python dictionary
for fast lookup. To achieve this we firstly move the edge
descriptions into the Python part of the program as shown
in Listing 7. Additionally a helper function get_edges is
defined which, given a source node, returns an iterator over
the destination nodes, thus describing the possible edges.
Finally, we replace the edge predicates many rules with a
single rule:

edge(From, To) :- python:get_edges(From, To)

Since get_edges returns an iterator, Unipycation converts it
to a Prolog choice point, making it a basis for backtracking
when finding solutions.

1 edges = {

2 "a" : ["c"], "c" : ["b", "d", "f"], "d" : ["e"],

3 "b" : ["e"], "f" : ["g"], "e" : ["g"], "g" : ["b"]

4 }

5

6 def get_edges(src_node):

7 return iter(edges[src_node])

Listing 7. Storing the edges in a dictionary.

5.6 Interaction with meta-tracing
Unipycation’s constituent interpreters have their own meta-
tracing JITs, such that code running in a single interpreter is
as fast as running it in a stand-alone PyPy or Pyrolog VM.
In this section we explore what happens on the level of the
tracing JITs when the interpreters call each other. Our expla-
nation is necessarily qualitative: we have performed spot-
checks of the generated traces but have not yet systemati-
cally evaluated the effects quantitatively. In order to do so,
we will have to invent a new evaluation methodology, which
is no small undertaking. Nevertheless we believe that this
section is a vital part of understanding the later preliminary
benchmarks.

The most important thing to note about Unipycation is
that most of its optimisations are inherent to meta-tracing,
which is the reason we believe that it is a promising ap-
proach to language composition implementation. Both PyPy
and Pyrolog are optimised for meta-tracing, in the sense that
their implementation has, where necessary, been structured
according to meta-tracings demands. Such structuring is rel-
atively minor (see [7] for more details): most commonly,
tracing annotations [4] are added to the interpreter to pro-
vide hints (e.g. “this RPython function’s loops can safely
be unrolled”) and guarantees (e.g. “this RPython function
always returns the same results given the same inputs”) to
the tracer; less commonly, code is e.g. moved into its own
function to allow an annotation to be added. To improve the
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performance of Unipycation, we added ten such annotations,
but PyPy and Pyrolog themselves were left unchanged.

A tracing JIT’s natural tendency to aggressively type-
specialise code (see [4, 17]) is important in reducing the
overhead of object conversions between interpreters. Trac-
ing a call from one language to the other naturally traces
the object conversion code (Section 5.3), type specialising
it. In essence, Unipycation assumes that the types of ob-
jects converted at a given point in the code will stay rela-
tively constant; similar assumptions are the basis of all dy-
namically typed language JITs. Type specialisation leaves
behind a type guard, so that if the assumption of type con-
stancy is later invalidated, execution returns to the inter-
preter. If, as is likely, the object conversion is part of a big-
ger trace with a previous type guard, RPython’s tracing opti-
miser will remove the type guard in the object conversion
entirely. Our experience, therefore, is that this aggressive
type-specialisation helps reduce the overhead of converting
objects between the languages.

A related optimisation occurs on the wrapped objects that
are created by cross-interpreter object conversion. The fre-
quent passing of objects between the two interpreters would
seem to be highly inefficient, as most will have to have a
new wrapper object created each time they are passed to an-
other interpreter. Our experience is that most such objects are
short-lived. Fortunately, RPython’s trace optimiser performs
escape analysis on traces which is able to remove allocation
costs for objects which live and die within a trace [3]. Our
experience, again, is that this is a very effective optimisation
for Unipycation.

The final optimisation we would hope to inherit from
meta-tracing is inlining, since tracing naturally inlines func-
tions unless they are very large or contain loops. Unfortu-
nately, while it would seem relatively easy to inline cross-
language calls, this is a work in progress: Python functions
are inlined into Prolog code if they don’t return iterators;
Prolog functions can not yet be inlined into Python. Though
we hope to remove this limitation soon, it is interesting to
understand why it happens. In short, determining where a
loop starts in Prolog is tricky, because loops are realised
as tail-recursive predicates. Pyrolog therefore marks every
predicate call as a potential loop, which means that the tracer
avoids inlining them. We hope to fix this by adding heuristics
to Pyrolog to identify potential loops.

6. Performance evaluation
Apart from our tests and a few case studies, no other soft-
ware has been written with Unipycation. Not only do we lack
programs which make good benchmarks, but it is not even
clear what good benchmarks might look like, nor which sys-
tems to compare against. We have therefore created 7 micro-
benchmarks to give us some idea of Unipycation’s cross-
language performance. While it is important to realise that
these results can not be generalised to large programs, they

are a useful first step in designing good benchmarks for com-
posed VMs.

Because we are most interested in evaluating the perfor-
mance of cross-language calling, each benchmark has two
functions, one calling the other. The micro-benchmarks are
as follows:

SmallFunc The outer function calls a tiny inlinable inner
function in a loop.

Loop1Arg0Result The outer function and inner function
are loops, the inner function receiving a single integer
argument.

Loop1Arg1Result The outer function and inner function
are loops, the inner function receiving a single integer
argument and returning a single integer result.

NondetLoop1Arg1Result The outer function calls an inner
function in a loop. The inner function produces more than
one integer result (by returning an iterator in Python, and
leaving a choice point in Prolog). The outer function asks
for all the results (with a for loop in Python, and with a
failure-driven loop in Prolog).

Lists The inner function produces a list, and the outer func-
tion consumes it. The lists are converted between Prolog
linked lists and Python array-based lists when passing the
language barrier.

PythonInstances The inner function produces a linked list
using Python instances, the outer function walks the
linked list.

TermConstruction The inner function produces a linked
list using Prolog terms, the outer function walks the
linked list.

The last two benchmarks have an important difference over
the first 5: in PythonInstances, even the pure Prolog version
handles Python instances; and in TermConstruction, even the
pure Python variant handles Prolog terms.

For each benchmark we have created four variants:

Python both functions are written in Python.

Prolog both functions are written in Prolog.

Python → Prolog the caller is written in Python, the callee
in Prolog.

Prolog → Python the caller is written in Prolog, the callee
in Python.

The first two variants give us a baseline, while the latter
two variants measure calling across the two languages. If the
inter-language variants are approximately the same speed as
the intra-language variants, we consider the VM composi-
tion to be efficient.

Benchmarks are run on an otherwise idle Intel Core i5-
3230M CPU with 2.60GHz and 3072 KiB cache and 16 GiB
RAM running Ubuntu Linux 13.04 in 64 bit mode. We run
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the benchmarks 50 times within the same process, discard-
ing the first 5 runs (which a manual inspection showed is
sufficient to allow the JIT to warm up; indeed, most bench-
marks are warmed up after one iteration). We then report
the average time together with a confidence interval using a
95% confidence level. The benchmarks are fully repeatable
and available for download (see page 2).

6.1 Analysis
The benchmark’s absolute run times in seconds can be seen
in Figure 1; Figure 2 shows the run times normalised to the
pure Python version, which we use as a baseline.

The two simplest benchmark results are Loop1Arg0-
Result and Loop1Arg1Result which support the common
perception that cross-language overheads can be neglected
if the work done on either side is large and the crossings few.

In Section 5.6 we explained why Unipycation currently
inlines Python functions called from Prolog, but not the re-
verse. SmallFunc (unintentionally) highlights how important
cross-language inlining can be. The Prolog → Python vari-
ant, where cross-language inlining occurs, is as fast as the
pure Python version; the Python → Prolog variant, where
cross-language inlining does not occur, is almost 100 times
slower than the pure Python variant. A similar effect can be
seen in NondetLoop1Arg1Result. There, the Python function
called from Prolog returns an iterator and can not be inlined
in Prolog. Thus neither the Python → Prolog nor Prolog →
Python version inlines cross-language calls, leading to poor
performance in both directions.

The overheads of the cross-language versions of Lists,
PythonInstances, and TermConstruction are relatively small,
at least compared to the very large overheads of Small-
Func and NondetLoop1Arg1Result. However, we do not yet
fully understand why these benchmarks perform as they do.
For example, why is pure Prolog so much faster operating
on Python instances in PythonInstances than on its native
terms? The reasons could be due to one or more of PyPy,
Pyrolog, RPython, or Unipycation. It is likely that we will
need to devise new benchmarks, and possibly new types of
analyses, to uncover the explanations of such results.

By our simple definition of efficiency (see Section 6), our
benchmarks suggest Unipycation is often an efficient cross-
language composition but sometimes decidedly not. While
we caution readers not to assume that these micro-bench-
marks tell one anything about ‘real’ Unipycation programs,
we believe that they show that the approach of composing
meta-tracing interpreters is a promising one. Clearly, we
have much work to do to improve performance further, but
Unipycation already appears to be a reasonable start.

7. Related Work
The motivation for language composition dates back to the
late 60s [12], though most of the early work was on extensi-
ble languages (e.g. [22]); to the best of our knowledge such

work largely disappeared from view for many years, though
there has been occasional successor work (e.g. [10, 24]). Un-
fortunately, the passing of time has made it hard to relate
much of this early work to the current day—in some cases it
has been decades since the systems involved could be run.

Though it lacks a single defining authority, the modern
Domain Specific Language (DSL) movement aims for a lim-
ited form of language composition. One part of the move-
ment (best represented by [20]) sees DSLs as a specific way
of using a language’s existing syntax and semantics, and is
of little relevance to this paper. The other part of the move-
ment aims to actively extend a language’s syntax and seman-
tics. It can be subdivided into heterogeneous and homoge-
neous language embeddings [29]. Homogeneous embedding
uses a single language’s system to express and host a lan-
guage embedding; most commonly via macros (e.g. Lisp) or
compile-time meta-programming (e.g. Converge [29]). Het-
erogeneous embedding uses an external system (e.g. Strat-
ego [9]) to express the embedding in a separate host system.
The two types of DSL embedding have important trade-offs:
homogeneous embedding is safe but inexpressive; heteroge-
neous embedding is expressive but unsafe. In either case,
it is hard to make the eventual running programs efficient
because of inevitable semantic mismatches (see page 1) be-
tween the DSL and host language. For example, compos-
ing Converge and a rule-based DSL was extremely ineffi-
cient due to the encoding of backtracking [29]. Not only was
the added machinery large, but it also defeated many of the
VM’s optimisations.

Semantic mismatches make it difficult to create perfor-
mant language compositions atop a single VM. While Java
programs on HotSpot have excellent performance, other lan-
guages (e.g. Python) on HotSpot often run slower than sim-
ple C-based interpreters [7]. While better VM extensions
(e.g. invokedynamic) or compiler alterations (e.g. [23]) can
improve performance, the results still lag some way behind
their meta-tracing equivalents [11]. We believe that language
composition by meta-tracing has the potential to sidestep the
semantic mismatch problem entirely by allowing each lan-
guage’s VM to be optimised specifically for that language.
As Unipycation is very simple, we can not yet say whether
this potential is realisable or not, though we have not yet
seen any evidence to suggest that it is not.

Similar approaches to Unipycation at the language-level
are the composition of Smalltalk and SOUL (a Prolog-like
logic programming language) [14, 19] and Java and tuPro-
log [13]. The SOUL / Smalltalk composition has a simi-
lar cross-language API to Unipycation. For example, SOUL
predicates are mapped to message sends, and SOUL’s mul-
tiple solutions are mapped to collections (albeit not lazily).
However, SOUL is implemented in Smalltalk, and tuProlog
in Java. This is very different to Unipycation which does not
implement one of the composed languages in terms of an-
other, but composes both as separate interpreters. Thus while
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Benchmark Python Py→ Prolog Prolog→ Py Prolog

SmallFunc 0.0944 ± 0.0013 9.3157 ± 0.0054 0.0943 ± 0.0000 0.7004 ± 0.0008

Loop1Arg0Result 0.1015 ± 0.0001 0.1155 ± 0.0003 0.1016 ± 0.0001 0.1151 ± 0.0013

Loop1Arg1Result 0.1340 ± 0.0013 0.1569 ± 0.0005 0.1336 ± 0.0001 0.1578 ± 0.0011

NondetLoop1Arg1Result 0.5498 ± 0.0002 8.1446 ± 0.0063 82.3137 ± 0.0844 0.6144 ± 0.0001

Lists 0.9955 ± 0.0004 3.2495 ± 0.0029 7.9950 ± 0.0079 7.3660 ± 0.0079

PythonInstances 1.9009 ± 0.0010 1.9732 ± 0.0010 2.2898 ± 0.0042 2.3849 ± 0.0026

TermConstruction 2.6400 ± 0.0019 4.3984 ± 0.0061 8.8248 ± 0.0078 3.8277 ± 0.0041

Table 1. Performance (in seconds) for the synthetic benchmarks.

Benchmark Python Py→ Prolog Prolog→ Py Prolog

SmallFunc 1.0 98.6895 ± 1.3580 0.9986 ± 0.0137 7.4203 ± 0.1023

Loop1Arg0Result 1.0 1.1371 ± 0.0030 1.0007 ± 0.0008 1.1335 ± 0.0129

Loop1Arg1Result 1.0 1.1713 ± 0.0121 0.9968 ± 0.0098 1.1776 ± 0.0143

NondetLoop1Arg1Result 1.0 14.8134 ± 0.0126 149.7116 ± 0.1625 1.1175 ± 0.0004

Lists 1.0 3.2643 ± 0.0032 8.0313 ± 0.0087 7.3995 ± 0.0086

PythonInstances 1.0 1.0380 ± 0.0007 1.2046 ± 0.0023 1.2546 ± 0.0015

TermConstruction 1.0 1.6661 ± 0.0026 3.3427 ± 0.0038 1.4499 ± 0.0019

Table 2. Performance normalized to the Python results for the synthetic benchmarks.

Unipycation composes two independently optimised and JIT
compiled interpreters, the other two compositions embed a
(slow) interpreter inside a normal program.

8. Discussion
Although neither PyPy or Pyrolog was designed with the
possibility of interpreter composition in mind, Unipycation
was relatively easy to implement, taking under four man
months. We believe this level of effort compares favourably
to traditional language composition approaches (e.g. trans-
lating to C or the JVM). The early signs are that Unipyca-
tion’s performance inherits meta-tracing’s general benefits,
in which case our experience from [7] suggests that it will
outperform the equivalent composition on the JVM. Clearly,
there is still considerable scope for improving performance,
for example by inlining Prolog code called from Python.

Although we are not the first to try composing impera-
tive and logic-based systems (see e.g. the Smalltalk/SOUL
composition [14]), we were pleased with the relative ease
of designing the language interactions in both directions.
We believe this bodes well for designing interactions be-
tween languages with more obviously compatible semantics
(e.g. Python and Ruby).

We found writing Unipycation case studies surprisingly
natural. The boundary between the languages is clear and
passing data between them simple. The most frequently en-
countered difficulty involved converting user-defined types,
which are not covered by Unipycation’s built-in rules (see
Section 5.3). For example, the Connect 4 program needs
to use two different representations of a counter. In Python

a counter is a binary tuple, while in Prolog it is a binary
term of functor c. Listing 8 shows a function which converts
a list of counters between these two representations. Al-
though Python’s list comprehension syntax makes the con-
version somewhat easier, manual type conversions can feel
clumsy. It may be plausible to ‘register’ such conversions
with Unipycation and have them performed automatically.

1 def _counters_to_terms(self):

2 """ convert the board to Prolog terms """

3 reds = [self.pl_engine.terms.c(x, y) for \

4 (x, y) in self._collect_token_coords("red")]

5 yellows = [self.pl_engine.terms.c(x, y) for \

6 (x, y) in self._collect_token_coords("yellow")]

7 return (reds, yellows)

Listing 8. Converting lists of counters in Connect 4.

Our experience highlighted some usability problems
which will take more effort to address. Debugging is an ob-
vious problem. Python code can be debugged with the PyPy
debugger pdb, but Pyrolog has no debugger. Even if it did,
it is not clear how cross-language debugging might best be
presented to the user. Such problems will have to be solved
before the style of language composition we have described
in this paper will become acceptable.

9. Conclusions
In this paper, we presented the first composition of meta-
tracing interpreters, an approach which should eventually
allow different languages to be composed while maintain-
ing their individual high levels of performance. Unipycation
is relatively simple, but it is not trivial: Python and Pro-
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log are languages with substantially different outlooks. We
performed a simple evaluation of Unipycation with micro-
benchmarks which suggest its performance is, at the very
least, usable. Equally importantly, we showed via a case
study that the composition can be used for tasks that a real
developer may find useful.
Acknowledgements: We thank Tim Felgentreff for com-
ments on a draft of this paper. This research was funded by
the EPSRC Cooler grant EP/K01790X/1.
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